Skip to main content

Low-Grade Gliomas

  • Chapter
  • First Online:
Molecular Pathology of Nervous System Tumors

Part of the book series: Molecular Pathology Library ((MPLB,volume 8))

  • 2000 Accesses

Abstract

Low-grade gliomas represent the most frequent primary brain tumors in children, and are also an important category of brain neoplasms in young adults. They are characterized by slow growth, but often associated with increased morbidity, as well as mortality in the subset that develop histologic progression. Pathologically they correspond to WHO grade I or II and include pilocytic astrocytoma (PA), pilomyxoid astrocytoma variant, angiocentric glioma, diffuse astrocytoma, oligodendroglioma, oligoastrocytoma, and pleomorphic xanthoastrocytoma (PXA). Although all low-grade glioma subtypes may develop in children and adults, and be histologically indistinguishable in these two populations, there are important clinical and molecular differences. As a rule, low-grade gliomas in adults have a greater tendency for histologic progression and more aggressive clinical behavior than those in children. With respect to genetic alterations, activating BRAF alterations and increased MAPK pathway signaling are near universal features of the circumscribed low-grade glioma group (e.g., PA and PXA). Whole exome/genome sequencing efforts and high resolution copy number platforms have also provided important biologic insights in these tumors, with adult low-grade diffuse gliomas containing frequent ATRX, TP53 mutations (astrocytomas), as well as 1p19q co-deletions, CIC, FUBP1 and TERT promoter mutations (oligodendrogliomas). Conversely, alterations in FGFR1, MYB, and MYBL1 are frequent events in pediatric low-grade diffuse gliomas. In this review we summarize our current knowledge of the diagnostic and molecular pathology of these tumors, and explore possible avenues for targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO classification of tumours of the central nervous system. Lyon: IARC Press; 2007.

    Google Scholar 

  2. Cheng Y, Pang JC, Ng HK, Ding M, Zhang SF, Zheng J, et al. Pilocytic astrocytomas do not show most of the genetic changes commonly seen in diffuse astrocytomas. Histopathology. 2000;37(5):437–44. Epub 2000/12/19.

    CAS  PubMed  Google Scholar 

  3. Buccoliero AM, Castiglione F, Rossi Degl’innocenti D, Gheri CF, Genitori L, Taddei GL. IDH1 mutation in pediatric gliomas: has it a diagnostic and prognostic value? Fetal Pediatr Pathol. 2012;31(5):278–82.

    CAS  PubMed  Google Scholar 

  4. Pollack IF, Hamilton RL, Sobol RW, Nikiforova MN, Lyons-Weiler MA, LaFramboise WA, et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst. 2011;27(1):87–94. Epub 2010/08/21.

    PubMed Central  PubMed  Google Scholar 

  5. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28(18):3061–8. Epub 2010/05/19.

    PubMed Central  PubMed  Google Scholar 

  6. Giannini C, Scheithauer BW, Burger PC, Christensen MR, Wollan PC, Sebo TJ, et al. Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol. 1999;58(1):46–53. Epub 1999/02/12.

    CAS  PubMed  Google Scholar 

  7. Tibbetts KM, Emnett RJ, Gao F, Perry A, Gutmann DH, Leonard JR. Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol. 2009;117(6):657–65. Epub 2009/03/10.

    CAS  PubMed  Google Scholar 

  8. Bowers DC, Gargan L, Kapur P, Reisch JS, Mulne AF, Shapiro KN, et al. Study of the MIB-1 labeling index as a predictor of tumor progression in pilocytic astrocytomas in children and adolescents. J Clin Oncol. 2003;21(15):2968–73. Epub 2003/07/30.

    PubMed  Google Scholar 

  9. Dirven CM, Koudstaal J, Mooij JJ, Molenaar WM. The proliferative potential of the pilocytic astrocytoma: the relation between MIB-1 labeling and clinical and neuro-radiological follow-up. J Neurooncol. 1998;37(1):9–16. Epub 1998/04/03.

    CAS  PubMed  Google Scholar 

  10. Fisher BJ, Naumova E, Leighton CC, Naumov GN, Kerklviet N, Fortin D, et al. Ki-67: a prognostic factor for low-grade glioma? Int J Radiat Oncol Biol Phys. 2002;52(4):996–1001. Epub 2002/04/18.

    PubMed  Google Scholar 

  11. Rodriguez FJ, Scheithauer BW, Burger PC, Jenkins S, Giannini C. Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol. 2010;34(2):147–60. Epub 2010/01/12.

    PubMed  Google Scholar 

  12. Tihan T, Fisher PG, Kepner JL, Godfraind C, McComb RD, Goldthwaite PT, et al. Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol. 1999;58(10):1061–8. Epub 1999/10/09.

    CAS  PubMed  Google Scholar 

  13. Colin C, Padovani L, Chappe C, Mercurio S, Scavarda D, Loundou A, et al. Outcome analysis of childhood pilocytic astrocytomas: a retrospective study of 148 cases at a single institution. Neuropathol Appl Neurobiol. 2012;39(6):693–705.

    Google Scholar 

  14. Johnson MW, Eberhart CG, Perry A, Tihan T, Cohen KJ, Rosenblum MK, et al. Spectrum of pilomyxoid astrocytomas: intermediate pilomyxoid tumors. Am J Surg Pathol. 2010;34(12):1783–91. Epub 2010/11/26.

    PubMed  Google Scholar 

  15. Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR. Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. 1996;91(4):368–75. Epub 1996/01/01.

    CAS  PubMed  Google Scholar 

  16. Reifenberger G, Kaulich K, Wiestler OD, Blumcke I. Expression of the CD34 antigen in pleomorphic xanthoastrocytomas. Acta Neuropathol. 2003;105(4):358–64. Epub 2003/03/08.

    CAS  PubMed  Google Scholar 

  17. Giannini C, Scheithauer BW, Burger PC, Brat DJ, Wollan PC, Lach B, et al. Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer. 1999;85(9):2033–45. Epub 1999/05/01.

    CAS  PubMed  Google Scholar 

  18. Lellouch-Tubiana A, Boddaert N, Bourgeois M, Fohlen M, Jouvet A, Delalande O, et al. Angiocentric neuroepithelial tumor (ANET): a new epilepsy-related clinicopathological entity with distinctive MRI. Brain Pathol. 2005;15(4):281–6. Epub 2006/01/05.

    PubMed  Google Scholar 

  19. Wang M, Tihan T, Rojiani AM, Bodhireddy SR, Prayson RA, Iacuone JJ, et al. Monomorphous angiocentric glioma: a distinctive epileptogenic neoplasm with features of infiltrating astrocytoma and ependymoma. J Neuropathol Exp Neurol. 2005;64(10):875–81. Epub 2005/10/11.

    PubMed  Google Scholar 

  20. Jones DT, Mulholland SA, Pearson DM, Malley DS, Openshaw SW, Lambert SR, et al. Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol. 2011;121(6):753–61. Epub 2011/02/18.

    PubMed  Google Scholar 

  21. Ballester LY, Wang Z, Shandilya S, Miettinen M, Burger PC, Eberhart CG, et al. Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine glioma. Am J Surg Pathol. 2013;37:1357–64.

    PubMed Central  PubMed  Google Scholar 

  22. Kreiger PA, Okada Y, Simon S, Rorke LB, Louis DN, Golden JA. Losses of chromosomes 1p and 19q are rare in pediatric oligodendrogliomas. Acta Neuropathol. 2005;109(4):387–92. Epub 2005/03/02.

    PubMed  Google Scholar 

  23. Raghavan R, Balani J, Perry A, Margraf L, Vono MB, Cai DX, et al. Pediatric oligodendrogliomas: a study of molecular alterations on 1p and 19q using fluorescence in situ hybridization. J Neuropathol Exp Neurol. 2003;62(5):530–7. Epub 2003/05/29.

    PubMed  Google Scholar 

  24. Rodriguez FJ, Burger PC, McDonald W, Nigro J, Lin D, Feuerstein B, et al. Clinicopathologic features of pediatric oligodendrogliomas with classic histology. J Neuropathol Exp Neurol. 2014;38(8):1058–70.

    Google Scholar 

  25. Agamanolis DP, Katsetos CD, Klonk CJ, Bartkowski HM, Ganapathy S, Staugaitis SM, et al. An unusual form of superficially disseminated glioma in children: report of 3 cases. J Child Neurol. 2012;27(6):727–33. Epub 2012/05/19.

    PubMed  Google Scholar 

  26. Perilongo G, Gardiman M, Bisaglia L, Rigobello L, Calderone M, Battistella A, et al. Spinal low-grade neoplasms with extensive leptomeningeal dissemination in children. Childs Nerv Syst. 2002;18(9–10):505–12. Epub 2002/10/17.

    PubMed  Google Scholar 

  27. Rodriguez FJ, Perry A, Rosenblum MK, Krawitz S, Cohen KJ, Lin D, et al. Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol. 2012;124(5):627–41. Epub 2012/09/04.

    PubMed  Google Scholar 

  28. Schniederjan MJ, Alghamdi S, Castellano-Sanchez A, Mazewski C, Brahma B, Brat DJ, et al. Diffuse leptomeningeal neuroepithelial tumor: 9 pediatric cases with chromosome 1p/19q deletion status and IDH1 (R132H) immunohistochemistry. Am J Surg Pathol. 2013;37(5):763–71. Epub 2013/04/17.

    PubMed  Google Scholar 

  29. Gupta K, Harreld JH, Sabin ND, Qaddoumi I, Kurian K, Ellison DW. Massively calcified low-grade glioma—a rare and distinctive entity. Neuropathol Appl Neurobiol. 2014;40(2):221–4.

    CAS  PubMed  Google Scholar 

  30. Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD, et al. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res. 2007;67(3):890–900. Epub 2007/02/07.

    CAS  PubMed  Google Scholar 

  31. Sharma MK, Watson MA, Lyman M, Perry A, Aldape KD, Deak F, et al. Matrilin-2 expression distinguishes clinically relevant subsets of pilocytic astrocytoma. Neurology. 2006;66(1):127–30. Epub 2006/01/13.

    CAS  PubMed  Google Scholar 

  32. Rodriguez FJ, Giannini C, Asmann YW, Sharma MK, Perry A, Tibbetts KM, et al. Gene expression profiling of NF-1-associated and sporadic pilocytic astrocytoma identifies aldehyde dehydrogenase 1 family member L1 (ALDH1L1) as an underexpressed candidate biomarker in aggressive subtypes. J Neuropathol Exp Neurol. 2008;67(12):1194–204. Epub 2008/11/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Wong KK, Chang YM, Tsang YT, Perlaky L, Su J, Adesina A, et al. Expression analysis of juvenile pilocytic astrocytomas by oligonucleotide microarray reveals two potential subgroups. Cancer Res. 2005;65(1):76–84. Epub 2005/01/25.

    CAS  PubMed  Google Scholar 

  34. Gorovets D, Kannan K, Shen R, Kastenhuber ER, Islamdoust N, Campos C, et al. IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res. 2012;18(9):2490–501. Epub 2012/03/15.

    CAS  PubMed  Google Scholar 

  35. Dahlback HS, Gorunova L, Brandal P, Scheie D, Helseth E, Meling TR, et al. Genomic aberrations in diffuse low-grade gliomas. Genes Chromosomes Cancer. 2011;50(6):409–20. Epub 2011/03/18.

    CAS  PubMed  Google Scholar 

  36. Kluwe L, Hagel C, Tatagiba M, Thomas S, Stavrou D, Ostertag H, et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol. 2001;60(9):917–20. Epub 2001/09/15.

    CAS  PubMed  Google Scholar 

  37. Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997;150(1):1–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Jenkins RB, Xiao Y, Sicotte H, Decker PA, Kollmeyer TM, Hansen HM, et al. A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet. 2012;44(10):1122–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2008;67(9):878–87. Epub 2008/08/22.

    CAS  PubMed  Google Scholar 

  40. Forshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW, et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol. 2009;218(2):172–81. Epub 2009/04/18.

    CAS  PubMed  Google Scholar 

  41. Jacob K, Albrecht S, Sollier C, Faury D, Sader E, Montpetit A, et al. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br J Cancer. 2009;101(4):722–33. Epub 2009/07/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7. Epub 2008/11/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118(5):1739–49. Epub 2008/04/10.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 2009;19(3):449–58. Epub 2008/11/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Yu J, Deshmukh H, Gutmann RJ, Emnett RJ, Rodriguez FJ, Watson MA, et al. Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma. Neurology. 2009;73(19):1526–31. Epub 2009/10/02.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Kaul A, Chen YH, Emnett RJ, Dahiya S, Gutmann DH. Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes Dev. 2012;26(23):2561–6. Epub 2012/11/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lin A, Rodriguez FJ, Karajannis MA, Williams SC, Legault G, Zagzag D, et al. BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol. 2012;71(1):66–72. Epub 2011/12/14.

    CAS  PubMed  Google Scholar 

  48. Hasselblatt M, Riesmeier B, Lechtape B, Brentrup A, Stummer W, Albert FK, et al. BRAF-KIAA1549 fusion transcripts are less frequent in pilocytic astrocytomas diagnosed in adults. Neuropathol Appl Neurobiol. 2011;37(7):803–6. Epub 2011/06/24.

    CAS  PubMed  Google Scholar 

  49. Cin H, Meyer C, Herr R, Janzarik WG, Lambert S, Jones DT, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121(6):763–74. Epub 2011/03/23.

    CAS  PubMed  Google Scholar 

  50. Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28(20):2119–23. Epub 2009/04/14.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Lawson AR, Hindley GF, Forshew T, Tatevossian RG, Jamie GA, Kelly GP, et al. RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology. Genome Res. 2011;21(4):505–14. Epub 2011/03/12.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–32. Epub 2013/07/03.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Chappe C, Padovani L, Scavarda D, Forest F, Nanni-Metellus I, Loundou A, et al. Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAF(V600E) mutation and expression. Brain Pathol. 2013;23(5):574–83. Epub 2013/02/28.

    PubMed  Google Scholar 

  54. Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ, et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol. 2010;12(7):621–30. Epub 2010/02/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Ida C, Vrana J, Rodriguez FJ, Jentoft M, Caron A, Jenkins S, et al. Immunohistochemistry is highly sensitive and specific for detection of BRAF V600E mutation in pleomorphic xanthoastrocytoma. Acta Neuropathol Comm. 2013;1:20.

    Google Scholar 

  56. Koelsche C, Wohrer A, Jeibmann A, Schittenhelm J, Schindler G, Preusser M, et al. Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells. Acta Neuropathol. 2013;125(6):891–900. Epub 2013/02/26.

    CAS  PubMed  Google Scholar 

  57. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405. Epub 2011/01/29.

    CAS  PubMed  Google Scholar 

  58. Koelsche C, Sahm F, Paulus W, Mittelbronn M, Giangaspero F, Antonelli M, et al. BRAF V600E expression and distribution in desmoplastic infantile astrocytoma/ganglioglioma. Neuropathol Appl Neurobiol. 2014;40(3):337–44.

    CAS  PubMed  Google Scholar 

  59. Bettegowda C, Agrawal N, Jiao Y, Wang Y, Wood LD, Rodriguez FJ, et al. Exomic sequencing of four rare central nervous system tumor types. Oncotarget. 2013;4(4):572–83. Epub 2013/04/18.

    PubMed Central  PubMed  Google Scholar 

  60. Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6(3):e17948. Epub 2011/04/12.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res. 2011;17(14):4790–8. Epub 2011/05/26.

    CAS  PubMed  Google Scholar 

  62. Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF. Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol. 2012;14(6):777–89. Epub 2012/04/12.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tian Y, Rich BE, Vena N, Craig JM, Macconaill LE, Rajaram V, et al. Detection of KIAA1549-BRAF fusion transcripts in formalin-fixed paraffin-embedded pediatric low-grade gliomas. J Mol Diagn. 2011;13(6):669–77. Epub 2011/09/03.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Sievert AJ, Lang SS, Boucher KL, Madsen PJ, Slaunwhite E, Choudhari N, et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci U S A. 2013;110(15):5957–62. Epub 2013/03/28.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Jacob K, Quang-Khuong DA, Jones DT, Witt H, Lambert S, Albrecht S, et al. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res. 2011;17(14):4650–60. Epub 2011/05/26.

    CAS  PubMed  Google Scholar 

  66. Raabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G, et al. BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res. 2011;17(11):3590–9. Epub 2011/06/04.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal. 2009;2(67):e24. Epub 2009/04/23.

    Google Scholar 

  68. Banerjee S, Crouse NR, Emnett RJ, Gianino SM, Gutmann DH. Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci U S A. 2011;108(38):15996–6001. Epub 2011/09/08.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Jentoft M, Giannini C, Cen L, Scheithauer BW, Hoesley B, Sarkaria JN, et al. Phenotypic variations in NF1-associated low grade astrocytomas: possible role for increased mTOR activation in a subset. Int J Clin Exp Pathol. 2010;4(1):43–57. Epub 2011/01/14.

    PubMed Central  PubMed  Google Scholar 

  70. Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B, et al. PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):407–20. Epub 2010/11/30.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Hütt-Cabezas M, Karajannis MA, Zagzag D, Shah S, Horkayne-Szakaly I, Rushing EJ, et al. Activation of mTORC1/mTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol. 2013;15(12):1604–14.

    PubMed  Google Scholar 

  72. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–32. Epub 2012/11/20.

    CAS  PubMed  Google Scholar 

  73. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45:602–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90(19):1473–9. Epub 1998/10/17.

    CAS  PubMed  Google Scholar 

  75. Jenkins RB, Curran W, Scott CB, Cairncross G. Pilot evaluation of 1p and 19q deletions in anaplastic oligodendrogliomas collected by a national cooperative cancer treatment group. Am J Clin Oncol. 2001;24(5):506–8. Epub 2001/10/05.

    CAS  PubMed  Google Scholar 

  76. Harada S, Henderson LB, Eshleman JR, Gocke CD, Burger P, Griffin CA, et al. Genomic changes in gliomas detected using single nucleotide polymorphism array in formalin-fixed, paraffin-embedded tissue: superior results compared with microsatellite analysis. J Mol Diagn. 2011;13(5):541–8. Epub 2011/07/06.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Griffin CA, Burger P, Morsberger L, Yonescu R, Swierczynski S, Weingart JD, et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol. 2006;65(10):988–94. Epub 2006/10/06.

    PubMed  Google Scholar 

  78. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66(20):9852–61. Epub 2006/10/19.

    CAS  PubMed  Google Scholar 

  79. Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011;333(6048):1453–5. Epub 2011/08/06.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226(1):7–16. Epub 2011/11/11.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118(4):469–74. Epub 2009/06/26.

    PubMed  Google Scholar 

  82. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174(4):1149–53. Epub 2009/02/28.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73. Epub 2009/02/21.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. Epub 2009/11/26.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol. 2013;125(5):621–36. Epub 2013/03/21.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18(20):5562–71. Epub 2012/10/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Camelo-Piragua S, Jansen M, Ganguly A, Kim JC, Cosper AK, Dias-Santagata D, et al. A sensitive and specific diagnostic panel to distinguish diffuse astrocytoma from astrocytosis: chromosome 7 gain with mutant isocitrate dehydrogenase 1 and p53. J Neuropathol Exp Neurol. 2011;70(2):110–5. Epub 2011/02/24.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Capper D, Weissert S, Balss J, Habel A, Meyer J, Jager D, et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 2010;20(1):245–54. Epub 2009/11/12.

    CAS  PubMed  Google Scholar 

  89. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425. Epub 2011/07/02.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER, et al. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget. 2012;3(10):1194–203. Epub 2012/10/30.

    PubMed Central  PubMed  Google Scholar 

  91. Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012;124(5):615–25. Epub 2012/08/14.

    CAS  PubMed  Google Scholar 

  92. Nguyen DN, Heaphy CM, de Wilde RF, Orr BA, Odia Y, Eberhart CG, et al. Molecular and morphologic correlates of the alternative lengthening of telomeres phenotype in high-grade astrocytomas. Brain Pathol. 2013;23(3):237–43. Epub 2012/08/30.

    PubMed  Google Scholar 

  93. Jiao Y, Killela PJ, Reitman ZJ, Rasheed AB, Heaphy CM, de Wilde RF, et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget. 2012;3(7):709–22. Epub 2012/08/08.

    PubMed Central  PubMed  Google Scholar 

  94. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz Jr LA, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A. 2013;110(15):6021–6. Epub 2013/03/27.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Ramkissoon LA, Horowitz PM, Craig JM, Ramkissoon SH, Rich BE, Schumacher SE, et al. Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A. 2013;110(20):8188–93. Epub 2013/05/02.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 2009;118(3):401–5. Epub 2009/06/23.

    CAS  PubMed  Google Scholar 

  97. Badiali M, Gleize V, Paris S, Moi L, Elhouadani S, Arcella A, et al. KIAA1549-BRAF fusions and IDH mutations can coexist in diffuse gliomas of adults. Brain Pathol. 2012;22(6):841–7. Epub 2012/05/18.

    CAS  PubMed  Google Scholar 

  98. Kim YH, Nonoguchi N, Paulus W, Brokinkel B, Keyvani K, Sure U, et al. Frequent BRAF gain in low-grade diffuse gliomas with 1p/19q loss. Brain Pathol. 2012;22(6):834–40. Epub 2012/05/10.

    CAS  PubMed  Google Scholar 

  99. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22. Epub 2010/04/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83. Epub 2012/02/22.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Mur P, Mollejo M, Ruano Y, de Lope AR, Fiano C, Garcia JF, et al. Codeletion of 1p and 19q determines distinct gene methylation and expression profiles in IDH-mutated oligodendroglial tumors. Acta Neuropathol. 2013;126(2):277–89. Epub 2013/05/22.

    CAS  PubMed  Google Scholar 

  102. Ho CY, Bar E, Giannini C, Marchionni L, Karajannis MA, Zagzag D, et al. MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant targets, including PBX3, NFIB, and METAP2. Neuro Oncol. 2013;15(1):69–82. Epub 2012/11/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Lambert SR, Witt H, Hovestadt V, Zucknick M, Kool M, Pearson DM, et al. Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathol. 2013;126(2):291–301. Epub 2013/05/11.

    CAS  PubMed  Google Scholar 

  104. Goeppert B, Schmidt CR, Geiselhart L, Dutruel C, Capper D, Renner M, et al. Differential expression of the tumor suppressor A-kinase anchor protein 12 in human diffuse and pilocytic astrocytomas is regulated by promoter methylation. J Neuropathol Exp Neurol. 2013;72(10):933–41. Epub 2013/09/18.

    CAS  PubMed  Google Scholar 

  105. Tatevossian RG, Lawson ARJ, Forshew T, Hindley GFL, Ellison DW, Sheer D. MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol. 2010;222(3):509–14.

    CAS  PubMed  Google Scholar 

  106. Karajannis M, Fisher M, Milla S, Cohen K, Legault G, Wisoff J, et al. Phase II study of sorafenib in children with recurrent/progressive low-grade astrocytomas. Neuro Oncol. 2013;15:32–3.

    Google Scholar 

  107. Shahabi V, Whitney G, Hamid O, Schmidt H, Chasalow S, Alaparthy S, et al. Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol Immunother. 2012;61(5):733–7.

    CAS  PubMed  Google Scholar 

  108. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26): 2507–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Wiencke JK, Zheng S, Jelluma N, Tihan T, Vandenberg S, Tamguney T, et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol. 2007;9(3):271–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A. 2001;98(18):10314–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Xu G, Zhang W, Bertram P, Zheng XF, McLeod H. Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncol. 2004;24(4):893–900.

    CAS  PubMed  Google Scholar 

  112. Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, et al. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 2003;63(11):2742–6.

    CAS  PubMed  Google Scholar 

  113. Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004;279(4):2737–46.

    CAS  PubMed  Google Scholar 

  114. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J, et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res. 2004;10(3):1013–23.

    CAS  PubMed  Google Scholar 

  115. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13): 2278–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Becher OJ, Trippett T, Gilheeney S, Khakoo Y, Lyden D, Haque S, et al. Phase I study of perifosine (AKT inhibitor) for recurrent pediatric solid tumors. Neuro Oncol. 2010;12(6):II42.

    Google Scholar 

  117. Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59(3):490–8.

    CAS  PubMed  Google Scholar 

  118. Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005;65(7):2755–60. Epub 2005/04/05.

    CAS  PubMed  Google Scholar 

  119. Packer RJ, Yalon M, Rood BR, Chao M, Miller MM, McCowage G, et al. Phase I/II study of Tarceva/Rapamcin for recurrent pediatric low-grade gliomas (LGG). Neuro Oncol. 2010;12(6):ii20.

    Google Scholar 

  120. Kieran MYX, Macy M, Geyer R, Cohen K, MacDonald T, Allen J, Boklan J, Smith A, Nazemi K, Gore L, Trippett T, DiRenzo J, Narendran A, Perentesis J, Prabhu S, Pinches N, Robison N, Manley P, Chi S. A prospective multi-institutional phase II study of everolimus (Rad001), an mTOR Inhibitor, in pediatric patients with recurrent or progressive low-grade glioma. Pediatric Blood & Cancer, SIOP 2013 Scientific Programme. 2013;60(S3):O-0068.

    Google Scholar 

  121. Cd B. PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol. 2013;71:1395–409.

    Google Scholar 

  122. Jokinen E, Laurila N, Koivunen J. Alternative dosing of dual PI3K and MEK inhibition in cancer therapy. BMC Cancer. 2012;12:612.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Juratli T, Kirsch M, Robel K, Soucek S, Geiger K, Kummer R, et al. IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. J Neurooncol. 2012;108(3):403–10.

    CAS  PubMed  Google Scholar 

  124. Kloosterhof NK, Bralten LBC, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol. 2011;12(1): 83–91.

    CAS  PubMed  Google Scholar 

  125. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636–43.

    CAS  PubMed  Google Scholar 

  127. Hartmann C, Hentschel B, Tatagiba M, Schramm J, Schnell O, Seidel C, et al. Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res. 2011;17(13):4588–99.

    CAS  PubMed  Google Scholar 

  128. Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75(17):1560–6.

    CAS  PubMed  Google Scholar 

  129. Ahmadi R, Stockhammer F, Becker N, Hohlen K, Misch M, Christians A, et al. No prognostic value of IDH1 mutations in a series of 100 WHO grade II astrocytomas. J Neurooncol. 2012;109(1):15–22.

    CAS  PubMed  Google Scholar 

  130. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, et al. An Inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340(6132): 626–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Popovici-Muller J, Saunders JO, Salituro FG, Travins JM, Yan S, Zhao F, et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med Chem Lett. 2012;3(10):850–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70(22): 8981–7.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto J. Rodriguez M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodriguez, F.J., Bowers, D.C. (2015). Low-Grade Gliomas. In: Karajannis, M., Zagzag, D. (eds) Molecular Pathology of Nervous System Tumors. Molecular Pathology Library, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1830-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1830-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1829-4

  • Online ISBN: 978-1-4939-1830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics