Skip to main content

Brain Tumor Stem Cells

  • Chapter
  • First Online:
Molecular Pathology of Nervous System Tumors

Abstract

In this chapter, we summarized the current understanding of stem cell biology in brain tumors, as well as emerging concepts. We have approached the issue from two perspectives: the cell of origin of brain tumors and cancer stem cells in brain tumors (BTSCs). Throughout the chapter, we discussed the possibility of neurogenic niches in normal brain as the putative origin of brain tumors and we highlighted molecular signatures and signaling pathways implicated in BTSC biology. Due to their intrinsic resistance to chemoradiotherapy and their highly tumorigenic nature, BTSCs represent attractive therapeutic targets. However, lack of universal molecular markers identifying BTSCs and complex interplay between signaling pathways regulating BTSC biology have thus far impaired the successful clinical implementation of directed therapeutics toward these cells. Furthermore, the overlap between molecular signatures in BTSCs and normal adult stem cells complicates the issue further due to putative toxicity. We believe that a better understanding of cellular heterogeneity and hierarchy in these tumors will be crucial to overcoming these issues and designing effective therapies against brain tumors and other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    CAS  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Google Scholar 

  3. Brennan C, et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One. 2009;4(11):e7752.

    PubMed Central  PubMed  Google Scholar 

  4. Phillips HS, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.

    CAS  PubMed  Google Scholar 

  5. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell. 2012;149(1):36–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    CAS  PubMed  Google Scholar 

  8. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  9. Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam. Neuron. 2008;58(6):832–46.

    CAS  PubMed  Google Scholar 

  10. Chen J, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Son MJ, et al. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell. 2009;4(5):440–52.

    CAS  PubMed  Google Scholar 

  12. Wang R, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468(7325):829–33.

    CAS  PubMed  Google Scholar 

  13. Ricci-Vitiani L, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824–8.

    CAS  PubMed  Google Scholar 

  14. Chao MP, Seita J, Weissman IL. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb Symp Quant Biol. 2008;73:439–49.

    CAS  PubMed  Google Scholar 

  15. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.

    CAS  PubMed  Google Scholar 

  16. Prestegarden L, Enger PO. Cancer stem cells in the central nervous system—a critical review. Cancer Res. 2010;70(21):8255–8.

    CAS  PubMed  Google Scholar 

  17. Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330): 314–22.

    CAS  PubMed  Google Scholar 

  18. Hambardzumyan D, et al. The probable cell of origin of NF1- and PDGF-driven glioblastomas. PLoS One. 2011;6(9):e24454.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Hambardzumyan D, et al. Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia. 2011;59(8):1155–68.

    PubMed Central  PubMed  Google Scholar 

  20. Lindberg N, et al. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28(23):2266–75.

    CAS  PubMed  Google Scholar 

  21. Llaguno SA, et al. Neural and cancer stem cells in tumor suppressor mouse models of malignant astrocytoma. Cold Spring Harb Symp Quant Biol. 2008;73:421–6.

    CAS  PubMed  Google Scholar 

  22. Marumoto T, et al. Development of a novel mouse glioma model using lentiviral vectors. Nat Med. 2009;15(1):110–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Zheng H, et al. Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol. 2008;73:427–37.

    CAS  PubMed  Google Scholar 

  24. Friedmann-Morvinski D, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012;338(6110):1080–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Holland EC, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25(1):55–7.

    CAS  PubMed  Google Scholar 

  26. Jacques TS, et al. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J. 2010;29(1):222–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang Y, et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell. 2009;15(6):514–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Doetsch F, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703–16.

    CAS  PubMed  Google Scholar 

  29. Fuentealba LC, Obernier K, Alvarez-Buylla A. Adult neural stem cells bridge their niche. Cell Stem Cell. 2012;10(6):698–708.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Sanai N, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478(7369):382–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Benner EJ, et al. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature. 2013;497(7449):369–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial-cell specification. Nature. 2010;468(7321):214–22.

    CAS  PubMed  Google Scholar 

  33. Eriksson PS, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    CAS  PubMed  Google Scholar 

  34. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med. 2005;353(8):811–22.

    CAS  PubMed  Google Scholar 

  35. Sanai N, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4.

    CAS  PubMed  Google Scholar 

  36. Nunes MC, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003;9(4):439–47.

    CAS  PubMed  Google Scholar 

  37. Noctor SC, et al. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001;409(6821):714–20.

    CAS  PubMed  Google Scholar 

  38. Merkle FT, et al. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A. 2004;101(50):17528–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Spassky N, et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci. 2005;25(1):10–8.

    CAS  PubMed  Google Scholar 

  40. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145–8.

    CAS  PubMed  Google Scholar 

  41. Curtis MA, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243–9.

    CAS  PubMed  Google Scholar 

  42. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature. 2005;437(7060):894–7.

    CAS  PubMed  Google Scholar 

  43. Jackson EL, Alvarez-Buylla A. Characterization of adult neural stem cells and their relation to brain tumors. Cells Tissues Organs. 2008;188(1–2):212–24.

    PubMed  Google Scholar 

  44. Kempermann G, et al. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development. 2003;130(2):391–9.

    CAS  PubMed  Google Scholar 

  45. Seri B, et al. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001;21(18):7153–60.

    CAS  PubMed  Google Scholar 

  46. Seri B, et al. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol. 2004;478(4):359–78.

    PubMed  Google Scholar 

  47. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16(6):2027–33.

    CAS  PubMed  Google Scholar 

  48. Nguyen LV, et al. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43.

    CAS  PubMed  Google Scholar 

  49. Lee J, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9(5):391–403.

    CAS  PubMed  Google Scholar 

  50. Huszthy PC, et al. In vivo models of primary brain tumors: pitfalls and perspectives. Neuro Oncol. 2012;14(8):979–93.

    PubMed Central  PubMed  Google Scholar 

  51. Jones TS, Holland EC. Animal models for glioma drug discovery. Expert Opin Drug Discov. 2011;6(12):1271–83.

    CAS  PubMed  Google Scholar 

  52. Candolfi M, et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol. 2007;85(2):133–48.

    PubMed Central  PubMed  Google Scholar 

  53. Wee B, Charles N, Holland EC. Animal models to study cancer-initiating cells from glioblastoma. Front Biosci. 2011;16:2243–58.

    CAS  Google Scholar 

  54. Hambardzumyan D, et al. Modeling adult gliomas using RCAS/t-va technology. Transl Oncol. 2009;2(2):89–95.

    PubMed Central  PubMed  Google Scholar 

  55. de Almeida Sassi F, et al. Glioma revisited: from neurogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol. 2012;2012, 537861.

    PubMed Central  PubMed  Google Scholar 

  56. Zhu Y, et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 2005;8(2):119–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kwon CH, et al. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res. 2008;68(9):3286–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Liu C, et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146(2):209–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Bachoo RM, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1(3):269–77.

    CAS  PubMed  Google Scholar 

  60. Dai C, et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15(15):1913–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Uhrbom L, et al. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 2002;62(19):5551–8.

    CAS  PubMed  Google Scholar 

  62. Uhrbom L, et al. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res. 2005;65(6):2065–9.

    CAS  PubMed  Google Scholar 

  63. Lai A, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29(34):4482–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Ellingson BM, et al. Probabilistic radiographic atlas of glioblastoma phenotypes. AJNR Am J Neuroradiol. 2013;34(3):533–40.

    CAS  PubMed  Google Scholar 

  65. Drabycz S, et al. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage. 2010;49(2):1398–405.

    CAS  PubMed  Google Scholar 

  66. Utsuki S, et al. Adult cerebellar glioblastoma cases have different characteristics from supratentorial glioblastoma. Brain Tumor Pathol. 2012;29(2):87–95.

    PubMed  Google Scholar 

  67. Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Xu W, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Figueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Sasaki M, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature. 2012;488(7413): 656–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Sasaki M, et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 2012;26(18):2038–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Shih AH, Levine RL. IDH1 mutations disrupt blood, brain, and barriers. Cancer Cell. 2012;22(3):285–7.

    CAS  PubMed  Google Scholar 

  75. Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 2011;8(5):486–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Piccirillo SG, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761–5.

    CAS  PubMed  Google Scholar 

  77. Hovinga KE, et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010;28(6):1019–29.

    CAS  PubMed  Google Scholar 

  78. Cheng L, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153(1):139–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ying M, et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene. 2011;30(31):3454–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Uchida N, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97 (26):14720–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Coskun V, et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci U S A. 2008;105(3):1026–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Pfenninger CV, et al. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007;67(12):5727–36.

    CAS  PubMed  Google Scholar 

  83. Shmelkov SV, et al. AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005;37(4):715–9.

    CAS  PubMed  Google Scholar 

  84. Gambelli F, et al. Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression. Cell Biol Int. 2012;36(1):29–38.

    CAS  PubMed  Google Scholar 

  85. Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013;2(1):17.

    PubMed Central  PubMed  Google Scholar 

  86. Zacchigna S, et al. Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci. 2009;29(7):2297–308.

    CAS  PubMed  Google Scholar 

  87. Manoranjan B, et al. Medulloblastoma stem cells: where development and cancer cross pathways. Pediatr Res. 2012;71(4 Pt 2):516–22.

    CAS  PubMed  Google Scholar 

  88. Paola B, et al. CD133 is essential for glioblastoma stem cell maintenance. Stem Cells. 2013;31(5):857–69.

    Google Scholar 

  89. Wang J, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122(4):761–8.

    CAS  PubMed  Google Scholar 

  90. Beier D, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010–5.

    CAS  PubMed  Google Scholar 

  91. Lottaz C, et al. Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res. 2010;70(5):2030–40.

    CAS  PubMed  Google Scholar 

  92. Yan X, et al. A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proc Natl Acad Sci U S A. 2011;108(4):1591–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Zarkoob H, et al. Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein. PLoS One. 2013;8(5):e64169.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Campos B, et al. Expression and regulation of AC133 and CD133 in glioblastoma. Glia. 2011;59(12):1974–86.

    PubMed  Google Scholar 

  95. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    CAS  PubMed  Google Scholar 

  96. Hemmati HD, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100(25): 15178–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Venugopal C, et al. Bmi1 marks intermediate precursors during differentiation of human brain tumor initiating cells. Stem Cell Res. 2012;8(2):141–53.

    CAS  PubMed  Google Scholar 

  98. Ikushima H, et al. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem. 2011;286(48):41434–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Liu G, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    PubMed Central  PubMed  Google Scholar 

  100. Lathia JD, et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell. 2010;6(5):421–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Brescia P, Richichi C, Pelicci G. Current strategies for identification of glioma stem cells: adequate or unsatisfactory? J Oncol. 2012;2012:376894.

    PubMed Central  PubMed  Google Scholar 

  102. Bar EE, et al. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol. 2010;177(3):1491–502.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Harris MA, et al. Cancer stem cells are enriched in the side population cells in a mouse model of glioma. Cancer Res. 2008;68(24):10051–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Gonzalez-Gomez P, Sanchez P, Mira H. MicroRNAs as regulators of neural stem cell-related pathways in glioblastoma multiforme. Mol Neurobiol. 2011;44(3):235–49.

    CAS  PubMed  Google Scholar 

  105. Huse JT, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009;23(11):1327–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Kim H, et al. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A. 2010;107(5):2183–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Shi L, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008;1236:185–93.

    CAS  PubMed  Google Scholar 

  108. Silber J, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;6:14.

    PubMed Central  PubMed  Google Scholar 

  109. Godlewski J, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125–30.

    CAS  PubMed  Google Scholar 

  110. Kefas B, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–72.

    CAS  PubMed  Google Scholar 

  111. Artavanis-Tsakonas S, Delidakis C, Fehon RG. The Notch locus and the cell biology of neuroblast segregation. Annu Rev Cell Biol. 1991;7:427–52.

    CAS  PubMed  Google Scholar 

  112. Hoppe PE, Greenspan RJ. Local function of the Notch gene for embryonic ectodermal pathway choice in Drosophila. Cell. 1986;46(5):773–83.

    CAS  PubMed  Google Scholar 

  113. Poulson DF. Chromosomal deficiencies and the embryonic development of drosophila melanogaster. Proc Natl Acad Sci U S A. 1937;23(3):133–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci. 2005;8(6):709–15.

    CAS  PubMed  Google Scholar 

  115. Mizutani K, et al. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature. 2007;449(7160):351–5.

    CAS  PubMed  Google Scholar 

  116. Wang J, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010;28(1):17–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kanamori M, et al. Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg. 2007;106(3):417–27.

    PubMed  Google Scholar 

  118. Lino MM, Merlo A, Boulay JL. Notch signaling in glioblastoma: a developmental drug target? BMC Med. 2010;8:72.

    PubMed Central  PubMed  Google Scholar 

  119. Chen J, et al. Inhibition of notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer. 2010;1(8):822–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Fan X, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010;28(1):5–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Calabrese C, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82.

    CAS  PubMed  Google Scholar 

  122. Zhu TS, et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 2011;71(18):6061–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Gallia GL, et al. Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther. 2009;8(2):386–93.

    CAS  PubMed  Google Scholar 

  124. Eyler CE, et al. Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells. 2008;26(12):3027–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Jones DT, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409):100–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Takezaki T, et al. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 2011;102(7):1306–12.

    CAS  PubMed  Google Scholar 

  127. Yang ZJ, et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14(2):135–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Karcher U, et al. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem. 1993;268(36):26821–6.

    CAS  PubMed  Google Scholar 

  129. Kim Y, et al. Wnt activation is implicated in glioblastoma radioresistance. Lab Invest. 2012;92(3):466–73.

    CAS  PubMed  Google Scholar 

  130. Anido J, et al. TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell. 2010;18(6):655–68.

    CAS  PubMed  Google Scholar 

  131. Ikushima H, et al. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5(5):504–14.

    CAS  PubMed  Google Scholar 

  132. Penuelas S, et al. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell. 2009;15(4):315–27.

    CAS  PubMed  Google Scholar 

  133. Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol. 2009;220(3):562–8.

    CAS  PubMed  Google Scholar 

  134. Gustafsson MV, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9(5):617–28.

    CAS  PubMed  Google Scholar 

  135. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12(1):9–22.

    CAS  Google Scholar 

  136. Mendez O, et al. Knock down of HIF-1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer. 2010;9:133.

    PubMed Central  PubMed  Google Scholar 

  137. Qiang L, et al. HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ. 2012;19(2):284–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Schwab LP, et al. Hypoxia-inducible factor 1alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res . 2012;14(1):R6.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Li Z, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15(6):501–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Zagzag D, et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest. 2006;86(12):1221–32.

    CAS  PubMed  Google Scholar 

  141. Heddleston JM, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8(20):3274–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Lee J, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13(1):69–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Tavazoie M, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008;3(3):279–88.

    CAS  PubMed  Google Scholar 

  144. Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007;7(10):733–6.

    CAS  PubMed  Google Scholar 

  145. Rong Y, et al. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65(6):529–39.

    PubMed  Google Scholar 

  146. Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol. 2010;222(1):1–10.

    CAS  PubMed  Google Scholar 

  147. de Groot JF, et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol. 2010;12(3):233–42.

    PubMed Central  PubMed  Google Scholar 

  148. Sampetrean O, et al. Invasion precedes tumor mass formation in a malignant brain tumor model of genetically modified neural stem cells. Neoplasia. 2011;13(9):784–91.

    PubMed Central  PubMed  Google Scholar 

  149. Winkler F, et al. Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia. 2009;57(12):1306–15.

    PubMed  Google Scholar 

  150. Onishi M, et al. Angiogenesis and invasion in glioma. Brain Tumor Pathol. 2011;28(1):13–24.

    CAS  PubMed  Google Scholar 

  151. Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012;181(4):1126–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Bleau AM, Huse JT, Holland EC. The ABCG2 resistance network of glioblastoma. Cell Cycle. 2009;8(18):2936–44.

    PubMed  Google Scholar 

  153. Bao Z, et al. BMP4, a strong better prognosis predictor, has a subtype preference and cell development association in gliomas. J Transl Med. 2013;11:100.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Hardee ME, et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-beta. Cancer Res. 2012;72(16):4119–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    CAS  PubMed  Google Scholar 

  156. Pirozzi CJ, Reitman ZJ, Yan H. Releasing the block: setting differentiation free with mutant IDH inhibitors. Cancer Cell. 2013;23(5):570–2.

    CAS  PubMed  Google Scholar 

  157. Hodges TR, et al. Isocitrate dehydrogenase 1: what it means to the neurosurgeon. J Neurosurg. 2013;118(6):1176–80.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris G. Placantonakis M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bayin, N.S., Modrek, A.S., Placantonakis, D.G. (2015). Brain Tumor Stem Cells. In: Karajannis, M., Zagzag, D. (eds) Molecular Pathology of Nervous System Tumors. Molecular Pathology Library, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1830-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1830-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1829-4

  • Online ISBN: 978-1-4939-1830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics