Skip to main content

Meningiomas

  • Chapter
  • First Online:
Molecular Pathology of Nervous System Tumors

Part of the book series: Molecular Pathology Library ((MPLB,volume 8))

  • 1991 Accesses

Abstract

Meningiomas are the most frequent intracranial tumors. Meningiomas differ considerably by their histological appearance, the preferred site of tumor manifestation, biological behavior, recurrence rate, and overall survival. The most frequent alteration found in sporadic meningioma affects the NF2 gene. NF2 alterations are thought to represent the initial step for meningioma development and they are found in a considerable fraction of benign World Health Organization (WHO) grade I and atypical grade II/anaplastic grade III meningioma. Additional alterations in grade I meningioma affect the SMO, AKT1, KLF4, TRAF7, SMARCE1, and SMARCB1 genes, which are mostly exclusive of NF2 alterations. While NF2 is affected preferentially in fibroblastic/transitional grade I meningioma, KLF4/TRAF7 and SMARCE1 are detected nearly exclusively in secretory and clear-cell meningioma, respectively. Meningioma progression and recurrence is linked to inactivation of tumor suppressor genes at 1p, 9p, 10q, and 14q, and the CDKN2A/CDKN2B genes on chromosome 9p have been demonstrated to be exceptionally relevant. Other progression-associated changes are loss of progesterone receptor expression, inactivation of TIMP3, loss of DAL1/protein 4.1B, reduced expression of NDRG2 and MEG3, and increased telomerase activity. Genetically engineered mouse models of meningioma have lent additional support to the important tumor-initiating role of NF2 alterations, as well as to the role of CDKN2A/CDKN2B for malignant progression of meningioma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15 Suppl 2:ii1–56.

    PubMed Central  PubMed  Google Scholar 

  2. Tufan K, Dogulu F, Kurt G, Emmez H, Ceviker N, Baykaner MK. Intracranial meningiomas of childhood and adolescence. Pediatr Neurosurg. 2005;41(1):1–7.

    PubMed  Google Scholar 

  3. Perry A, Giannini C, Raghavan R, Scheithauer BW, Banerjee R, Margraf L, et al. Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol. 2001;60(10):994–1003.

    CAS  PubMed  Google Scholar 

  4. Klaeboe L, Lonn S, Scheie D, Auvinen A, Christensen HC, Feychting M, et al. Incidence of intracranial meningiomas in Denmark, Finland, Norway and Sweden, 1968–1997. Int J Cancer. 2005;117(6):996–1001.

    CAS  PubMed  Google Scholar 

  5. Sadetzki S, Flint-Richter P, Ben-Tal T. Radiation induced meningioma: a descriptive study of 253 cases. J Neurosurg. 2002;97:1078–82.

    PubMed  Google Scholar 

  6. Schneider B, Pulhorn H, Rohrig B, Rainov NG. Predisposing conditions and risk factors for development of symptomatic meningioma in adults. Cancer Detect Prev. 2005;29(5):440–7.

    PubMed  Google Scholar 

  7. Flint-Richter P, Mandelzweig L, Oberman B, Sadetzki S. Possible interaction between ionizing radiation, smoking, and gender in the causation of meningioma. Neuro Oncol. 2011;13(3):345–52.

    PubMed Central  PubMed  Google Scholar 

  8. Benson VS, Pirie K, Schuz J, Reeves GK, Beral V, Green J. Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int J Epidemiol. 2013;42(3):792–802.

    PubMed  Google Scholar 

  9. Al-Mefty O, Topsakal C, Pravdenkova S, Sawyer JR, Harrison MJ. Radiation-induced meningiomas: clinical, pathological, cytokinetic, and cytogenetic characteristics. J Neurosurg. 2004;100(6):1002–13.

    PubMed  Google Scholar 

  10. Flint-Richter P, Sadetzki S. Genetic predisposition for the development of radiation-associated meningioma: an epidemiological study. Lancet Oncol. 2007;8(5):403–10.

    PubMed  Google Scholar 

  11. Elbabaa SK, Gokden M, Crawford JR, Kesari S, Saad AG. Radiation-associated meningiomas in children: clinical, pathological, and cytogenetic characteristics with a critical review of the literature. J Neurosurg Pediatr. 2012;10(4):281–90.

    PubMed  Google Scholar 

  12. Antinheimo J, Sankila R, Carpen O, Pukkala E, Sainio M, Jaaskelainen J. Population-based analysis of sporadic and type 2 neurofibromatosis-associated meningiomas and schwannomas. Neurology. 2000;54(1):71–6.

    CAS  PubMed  Google Scholar 

  13. Hemminki K, Li X. Familial risks in nervous system tumors. Cancer Epidemiol Biomarkers Prev. 2003;12(11 Pt 1):1137–42.

    PubMed  Google Scholar 

  14. Smith MJ, Higgs JE, Bowers NL, Halliday D, Paterson J, Gillespie J, et al. Cranial meningiomas in 411 neurofibromatosis type 2 (NF2) patients with proven gene mutations: clear positional effect of mutations, but absence of female severity effect on age at onset. J Med Genet. 2011;48(4):261–5.

    CAS  PubMed  Google Scholar 

  15. Albrecht S, Goodman JC, Rajagopolan S, Levy M, Cech DA, Cooley LD. Malignant meningioma in Gorlin’s syndrome: cytogenetic and p53 gene analysis. Case report. J Neurosurg. 1994;81(3):466–71.

    CAS  PubMed  Google Scholar 

  16. Lindboe CF, Helseth E, Myhr G. Lhermitte-Duclos disease and giant meningioma as manifestations of Cowden’s disease. Clin Neuropathol. 1995;14(6):327–30.

    CAS  PubMed  Google Scholar 

  17. De Moura J, Kavalec FL, Doghman M, Rosati R, Custodio G, Lalli E, et al. Heterozygous TP53stop146/R72P fibroblasts from a Li-Fraumeni syndrome patient with impaired response to DNA damage. Int J Oncol. 2010;36(4):983–90.

    PubMed  Google Scholar 

  18. Marini F, Falchetti A, Del Monte F, Carbonell Sala S, Gozzini A, Luzi E, et al. Multiple endocrine neoplasia type 1. Orphanet J Rare Dis. 2006;1:38.

    PubMed Central  PubMed  Google Scholar 

  19. Mawrin C, Perry A. Pathological classification and molecular genetics of meningiomas. J Neurooncol. 2010;99(3):379–91.

    CAS  PubMed  Google Scholar 

  20. Catala M. Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species. Part I: the ventricular system, meninges and choroid plexuses. Arch Anat Cytol Pathol. 1998;46(3):153–69.

    CAS  PubMed  Google Scholar 

  21. Kros J, de Greve K, van Tilborg A, Hop W, Pieterman H, Avezaat C, et al. NF2 status of meningiomas is associated with tumour localization and histology. J Pathol. 2001;194(3):367–72.

    CAS  PubMed  Google Scholar 

  22. Lee JH, Sade B, Choi E, Golubic M, Prayson R. Meningothelioma as the predominant histological subtype of midline skull base and spinal meningioma. J Neurosurg. 2006;105(1):60–4.

    PubMed  Google Scholar 

  23. Ketter R, Rahnenfuhrer J, Henn W, Kim Y, Feiden W, Steudel W, et al. Correspondence of tumor localization with tumor recurrence and cytogenetic progression in meningiomas. Neurosurgery. 2008;62(1):61–9.

    PubMed  Google Scholar 

  24. Pearson BE, Markert JM, Fisher WS, Guthrie BL, Fiveash JB, Palmer CA, et al. Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria. Neurosurg Focus. 2008;24(5):E3.

    PubMed  Google Scholar 

  25. Durand A, Labrousse F, Jouvet A, Bauchet L, Kalamarides M, Menei P, et al. WHO grade II and III meningiomas: a study of prognostic factors. J Neurooncol. 2009;95(3):367–75.

    PubMed  Google Scholar 

  26. Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC. “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer. 1999;85(9):2046–56.

    CAS  PubMed  Google Scholar 

  27. Perry A, Stafford S, Scheithauer B. Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol. 1997;22:1482–90.

    Google Scholar 

  28. Zang KD, Singer H. Chromosomal constitution of meningiomas. Nature. 1967;216(5110):84–5.

    CAS  PubMed  Google Scholar 

  29. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature. 1993;363(6429):515–21.

    CAS  PubMed  Google Scholar 

  30. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993;72(5):791–800.

    CAS  PubMed  Google Scholar 

  31. Evans DG, Huson SM, Donnai D, Neary W, Blair V, Teare D, et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet. 1992;29(12):841–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Seizinger BR, de la Monte S, Atkins L, Gusella JF, Martuza RL. Molecular genetic approach to human meningioma: loss of genes on chromosome 22. Proc Natl Acad Sci U S A. 1987;84(15):5419–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Dumanski JP, Carlbom E, Collins VP, Nordenskjold M. Deletion mapping of a locus on human chromosome 22 involved in the oncogenesis of meningioma. Proc Natl Acad Sci U S A. 1987;84(24):9275–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Ruttledge MH, Xie YG, Han FY, Peyrard M, Collins VP, Nordenskjold M, et al. Deletions on chromosome 22 in sporadic meningioma. Genes Chromosomes Cancer. 1994;10(2):122–30.

    CAS  PubMed  Google Scholar 

  35. Dumanski JP, Rouleau GA, Nordenskjold M, Collins VP. Molecular genetic analysis of chromosome 22 in 81 cases of meningioma. Cancer Res. 1990;50(18):5863–7.

    CAS  PubMed  Google Scholar 

  36. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6(2):180–4.

    CAS  PubMed  Google Scholar 

  37. Gutmann DH, Giordano MJ, Fishback AS, Guha A. Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology. 1997;49(1):267–70.

    CAS  PubMed  Google Scholar 

  38. Lomas J, Bello MJ, Arjona D, Alonso ME, Martinez-Glez V, Lopez-Marin I, et al. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer. 2005;42(3):314–9.

    CAS  PubMed  Google Scholar 

  39. Hansson CM, Buckley PG, Grigelioniene G, Piotrowski A, Hellstrom AR, Mantripragada K, et al. Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus. BMC Genomics. 2007;8:16.

    PubMed Central  PubMed  Google Scholar 

  40. Kimura Y, Koga H, Araki N, Mugita N, Fujita N, Takeshima H, et al. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nat Med. 1998;4(8):915–22.

    CAS  PubMed  Google Scholar 

  41. van Tilborg AA, Morolli B, Giphart-Gassler M, de Vries A, van Geenen DA, Lurkin I, et al. Lack of genetic and epigenetic changes in meningiomas without NF2 loss. J Pathol. 2006;208(4):564–73.

    PubMed  Google Scholar 

  42. Curto M, McClatchey AI. Nf2/Merlin: a coordinator of receptor signalling and intercellular contact. Br J Cancer. 2008;98(2):256–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Wellenreuther R, Kraus JA, Lenartz D, Menon AG, Schramm J, Louis DN, et al. Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol. 1995;146(4):827–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Goutagny S, Yang HW, Zucman-Rossi J, Chan J, Dreyfuss JM, Park PJ, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res. 2010;16(16):4155–64.

    CAS  PubMed  Google Scholar 

  46. Hartmann C, Sieberns J, Gehlhaar C, Simon M, Paulus W, von Deimling A. NF2 mutations in secretory and other rare variants of meningiomas. Brain Pathol. 2006;16(1):15–9.

    CAS  PubMed  Google Scholar 

  47. Wada K, Maruno M, Suzuki T, Kagawa N, Hashiba T, Fujimoto Y, et al. Chromosomal and genetic aberrations differ with meningioma subtype. Brain Tumor Pathol. 2004;21(3):127–33.

    CAS  PubMed  Google Scholar 

  48. Heinrich B, Hartmann C, Stemmer-Rachamimov AO, Louis DN, MacCollin M. Multiple meningiomas: investigating the molecular basis of sporadic and familial forms. Int J Cancer. 2003;103(4):483–8.

    CAS  PubMed  Google Scholar 

  49. Nahser HC, Grote W, Lohr E, Gerhard L. Multiple meningiomas. Clinical and computer tomographic observations. Neuroradiology. 1981;21(5):259–63.

    CAS  PubMed  Google Scholar 

  50. Larson JJ, Tew Jr JM, Simon M, Menon AG. Evidence for clonal spread in the development of multiple meningiomas. J Neurosurg. 1995;83(4):705–9.

    CAS  PubMed  Google Scholar 

  51. Stangl AP, Wellenreuther R, Lenartz D, Kraus JA, Menon AG, Schramm J, et al. Clonality of multiple meningiomas. J Neurosurg. 1997;86(5):853–8.

    CAS  PubMed  Google Scholar 

  52. Goutagny S, Kalamarides M. Meningiomas and neurofibromatosis. J Neurooncol. 2010;99(3):341–7.

    PubMed  Google Scholar 

  53. Kluwe L, Mautner V, Heinrich B, Dezube R, Jacoby LB, Friedrich RE, et al. Molecular study of frequency of mosaicism in neurofibromatosis 2 patients with bilateral vestibular schwannomas. J Med Genet. 2003;40(2):109–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Evans DG, Watson C, King A, Wallace AJ, Baser ME. Multiple meningiomas: differential involvement of the NF2 gene in children and adults. J Med Genet. 2005;42(1):45–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Hsieh HY, Wu T, Wang CJ, Chin SC, Chen YR. Neurological complications involving the central nervous system in neurofibromatosis type 1. Acta Neurol Taiwan. 2007;16(2):68–73.

    PubMed  Google Scholar 

  56. Kalamarides M, Niwa-Kawakita M, Leblois H, Abramowski V, Perricaudet M, Janin A, et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 2002;16(9):1060–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kawashima M, Suzuki SO, Yamashima T, Fukui M, Iwaki T. Prostaglandin D synthase (beta-trace) in meningeal hemangiopericytoma. Mod Pathol. 2001;14(3):197–201.

    CAS  PubMed  Google Scholar 

  58. Kalamarides M, Stemmer-Rachamimov AO, Niwa-Kawakita M, Chareyre F, Taranchon E, Han ZY, et al. Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes. Oncogene. 2011;30(20):2333–44.

    CAS  PubMed  Google Scholar 

  59. Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.

    CAS  PubMed  Google Scholar 

  60. Sahm F, Bissel J, Koelsche C, Schweizer L, Capper D, Reuss D, et al. AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathol. 2013;2013:6.

    Google Scholar 

  61. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448(7152):439–44.

    CAS  PubMed  Google Scholar 

  62. Bleeker FE, Felicioni L, Buttitta F, Lamba S, Cardone L, Rodolfo M, et al. AKT1(E17K) in human solid tumours. Oncogene. 2008;27(42):5648–50.

    CAS  PubMed  Google Scholar 

  63. Reuss DE, Piro RM, Jones DT, Simon M, Ketter R, Kool M, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013;125(3):351–8.

    CAS  PubMed  Google Scholar 

  64. Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6(1):11–23.

    CAS  PubMed  Google Scholar 

  65. Kamp MA, Beseoglu K, Eicker S, Steiger HJ, Hanggi D. Secretory meningiomas: systematic analysis of epidemiological, clinical, and radiological features. Acta Neurochir (Wien). 2011;153(3):457–65.

    Google Scholar 

  66. Stover JF, Dohse NK, Unterberg AW. Significant reduction in brain swelling by administration of nonpeptide kinin B2 receptor antagonist LF 16-0687Ms after controlled cortical impact injury in rats. J Neurosurg. 2000;92(5):853–9.

    CAS  PubMed  Google Scholar 

  67. Buccoliero AM, Gheri CF, Castiglione F, Ammannati F, Gallina P, Taddei A, et al. Merlin expression in secretory meningiomas: evidence of an NF2-independent pathogenesis? Immunohistochemical study. Appl Immunohistochem Mol Morphol. 2007;15(3):353–7.

    PubMed  Google Scholar 

  68. Aavikko M, Li SP, Saarinen S, Alhopuro P, Kaasinen E, Morgunova E, et al. Loss of SUFU function in familial multiple meningioma. Am J Hum Genet. 2012;91(3):520–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Kijima C, Miyashita T, Suzuki M, Oka H, Fujii K. Two cases of nevoid basal cell carcinoma syndrome associated with meningioma caused by a PTCH1 or SUFU germline mutation. Fam Cancer. 2012;11(4):565–70.

    PubMed  Google Scholar 

  70. Schmitz U, Mueller W, Weber M, Sevenet N, Delattre O, von Deimling A. INI1 mutations in meningiomas at a potential hotspot in exon 9. Br J Cancer. 2001;84(2):199–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Rieske P, Zakrzewska M, Piaskowski S, Jaskolski D, Sikorska B, Papierz W, et al. Molecular heterogeneity of meningioma with INI1 mutation. Mol Pathol. 2003;56(5):299–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. van den Munckhof P, Christiaans I, Kenter SB, Baas F, Hulsebos TJ. Germline SMARCB1 mutation predisposes to multiple meningiomas and schwannomas with preferential location of cranial meningiomas at the falx cerebri. Neurogenetics. 2012;13(1):1–7.

    PubMed  Google Scholar 

  73. Hadfield KD, Smith MJ, Trump D, Newman WG, Evans DG. SMARCB1 mutations are not a common cause of multiple meningiomas. J Med Genet. 2010;47(8):567–8.

    CAS  PubMed  Google Scholar 

  74. Smith MJ, O’Sullivan J, Bhaskar SS, Hadfield KD, Poke G, Caird J, et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet. 2013;45(3):295–8.

    CAS  PubMed  Google Scholar 

  75. Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M. Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg. 2004;101(2):210–8.

    PubMed  Google Scholar 

  76. Krayenbuhl N, Pravdenkova S, Al-Mefty O. De novo versus transformed atypical and anaplastic meningiomas: comparisons of clinical course, cytogenetics, cytokinetics, and outcome. Neurosurgery. 2007;61(3):495–503; discussion 503–4.

    PubMed  Google Scholar 

  77. Yang SY, Park CK, Park SH, Kim DG, Chung YS, Jung HW. Atypical and anaplastic meningiomas: prognostic implications of clinicopathological features. J Neurol Neurosurg Psychiatry. 2008;79(5):574–80.

    PubMed  Google Scholar 

  78. Yang HW, Kim TM, Song SS, Shrinath N, Park R, Kalamarides M, et al. Alternative splicing of CHEK2 and codeletion with NF2 promote chromosomal instability in meningioma. Neoplasia. 2012;14(1):20–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Gutmann C, Donahoe J, Perry A. Loss of DAL-1, a second protein 4.1 tumor suppressor, is an important early event in the pathogenesis of meningioma. Hum Mol Genet. 2000;9:1495–500.

    CAS  PubMed  Google Scholar 

  80. Nunes F, Shen Y, Niida Y, Beauchamp R, Stemmer-Rachamimov AO, Ramesh V, et al. Inactivation patterns of NF2 and DAL-1/4.1B (EPB41L3) in sporadic meningioma. Cancer Genet Cytogenet. 2005;162(2):135–9.

    CAS  PubMed  Google Scholar 

  81. Perry A, Cai D, Scheithauer B, Swanson P, Lohse C, Newsham I, et al. Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol. 2000;59(10):872–9.

    CAS  PubMed  Google Scholar 

  82. Yi C, McCarty JH, Troutman SA, Eckman MS, Bronson RT, Kissil JL. Loss of the putative tumor suppressor band 4.1B/Dal1 gene is dispensable for normal development and does not predispose to cancer. Mol Cell Biol. 2005;25(22):10052–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Martinez-Glez V, Bello MJ, Franco-Hernandez C, De Campos JM, Isla A, Vaquero J, et al. Mutational analysis of the DAL-1/4.1B tumour-suppressor gene locus in meningiomas. Int J Mol Med. 2005;16(4):771–4.

    CAS  PubMed  Google Scholar 

  84. Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, et al. Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res. 1995;55(20):4696–701.

    CAS  PubMed  Google Scholar 

  85. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci U S A. 1997;94(26):14719–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gabeau-Lacet D, Engler D, Gupta S, Scangas GA, Betensky RA, Barker II FG, et al. Genomic profiling of atypical meningiomas associates gain of 1q with poor clinical outcome. J Neuropathol Exp Neurol. 2009;68(10):1155–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Krupp W, Holland H, Koschny R, Bauer M, Schober R, Kirsten H, et al. Genome-wide genetic characterization of an atypical meningioma by single-nucleotide polymorphism array-based mapping and classical cytogenetics. Cancer Genet Cytogenet. 2008;184(2):87–93.

    CAS  PubMed  Google Scholar 

  88. Lee JY, Finkelstein S, Hamilton RL, Rekha R, King Jr JT, Omalu B. Loss of heterozygosity analysis of benign, atypical, and anaplastic meningiomas. Neurosurgery. 2004;55(5):1163–73.

    PubMed  Google Scholar 

  89. Ishino S, Hashimoto N, Fushiki S, Date K, Mori T, Fujimoto M, et al. Loss of material from chromosome arm 1p during malignant progression of meningioma revealed by fluorescent in situ hybridization. Cancer. 1998;83(2):360–6.

    CAS  PubMed  Google Scholar 

  90. Sulman EP, White PS, Brodeur GM. Genomic annotation of the meningioma tumor suppressor locus on chromosome 1p34. Oncogene. 2004;23(4):1014–20.

    CAS  PubMed  Google Scholar 

  91. Lee Y, Liu J, Patel S, Cloughesy T, Lai A, Farooqi H, et al. Genomic landscape of meningiomas. Brain Pathol. 2010;20(4):751–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Pfisterer WK, Coons SW, Aboul-Enein F, Hendricks WP, Scheck AC, Preul MC. Implicating chromosomal aberrations with meningioma growth and recurrence: results from FISH and MIB-I analysis of grades I and II meningioma tissue. J Neurooncol. 2008;87(1):43–50.

    PubMed  Google Scholar 

  93. Perez-Magan E, Rodriguez de Lope A, Ribalta T, Ruano Y, Campos-Martin Y, Perez-Bautista G, et al. Differential expression profiling analyses identifies downregulation of 1p, 6q, and 14q genes and overexpression of 6p histone cluster 1 genes as markers of recurrence in meningiomas. Neuro Oncol. 2010;12(12):1278–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Linsler S, Kraemer D, Driess C, Oertel J, Kammers K, Rahnenfuhrer J, et al. Molecular biological determinations of meningioma progression and recurrence. PLoS One. 2014;9(4):e94987.

    PubMed Central  PubMed  Google Scholar 

  95. Carvalho LH, Smirnov I, Baia GS, Modrusan Z, Smith JS, Jun P, et al. Molecular signatures define two main classes of meningiomas. Mol Cancer. 2007;6(64):64.

    PubMed Central  PubMed  Google Scholar 

  96. Barski D, Wolter M, Reifenberger G, Riemenschneider MJ. Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12.3 and malignancy in meningiomas. Brain Pathol. 2010;20(3):623–31.

    CAS  PubMed  Google Scholar 

  97. Stuart JE, Lusis EA, Scheck AC, Coons SW, Lal A, Perry A, et al. Identification of gene markers associated with aggressive meningioma by filtering across multiple sets of gene expression arrays. J Neuropathol Exp Neurol. 2011;70(1):1–12.

    CAS  PubMed  Google Scholar 

  98. Fevre-Montange M, Champier J, Durand A, Wierinckx A, Honnorat J, Guyotat J, et al. Microarray gene expression profiling in meningiomas: differential expression according to grade or histopathological subtype. Int J Oncol. 2009;35(6):1395–407.

    CAS  PubMed  Google Scholar 

  99. Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, et al. Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis. 1996;17(9):1805–11.

    CAS  PubMed  Google Scholar 

  100. Bostrom J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, et al. Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol. 2001;159(2):661–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Perry A, Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW. A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol. 2002;12(2):183–90.

    CAS  PubMed  Google Scholar 

  102. Tse JY, Ng HK, Lo KW, Chong EY, Lam PY, Ng EK, et al. Analysis of cell cycle regulators: p16INK4A, pRb, and CDK4 in low- and high-grade meningiomas. Hum Pathol. 1998;29(11):1200–7.

    CAS  PubMed  Google Scholar 

  103. Liu Y, Pang JC, Dong S, Mao B, Poon WS, Ng HK. Aberrant CpG island hypermethylation profile is associated with atypical and anaplastic meningiomas. Hum Pathol. 2005;36(4):416–25.

    CAS  PubMed  Google Scholar 

  104. Peyre M, Stemmer-Rachamimov A, Clermont-Taranchon E, Quentin S, El-Taraya N, Walczak C, et al. Meningioma progression in mice triggered by Nf2 and Cdkn2ab inactivation. Oncogene. 2013;32(36):4264–72.

    CAS  PubMed  Google Scholar 

  105. Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 1997;57(12):2369–72.

    CAS  PubMed  Google Scholar 

  106. Cai DX, James CD, Scheithauer BW, Couch FJ, Perry A. PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol. 2001;115(2):213–8.

    CAS  PubMed  Google Scholar 

  107. Surace EI, Lusis E, Haipek CA, Gutmann DH. Functional significance of S6K overexpression in meningioma progression. Ann Neurol. 2004;56(2):295–8.

    CAS  PubMed  Google Scholar 

  108. Pachow D, Andrae N, Kliese N, Angenstein F, Stork O, Wilisch-Neumann A, et al. mTORC1 inhibitors suppress meningioma growth in mouse models. Clin Cancer Res. 2013;19(5):1180–9.

    CAS  PubMed  Google Scholar 

  109. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Balik V, Srovnal J, Sulla I, Kalita O, Foltanova T, Vaverka M, et al. MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol. 2013;112(1):1–8.

    CAS  PubMed  Google Scholar 

  111. Lusis EA, Watson MA, Chicoine MR, Lyman M, Roerig P, Reifenberger G, et al. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res. 2005;65(16):7121–6.

    CAS  PubMed  Google Scholar 

  112. Skiriute D, Tamasauskas S, Asmoniene V, Saferis V, Skauminas K, Deltuva V, et al. Tumor grade-related NDRG2 gene expression in primary and recurrent intracranial meningiomas. J Neurooncol. 2011;102(1):89–94.

    CAS  PubMed  Google Scholar 

  113. Santarius T, Kirsch M, Nikas DC, Imitola J, Black PM. Molecular analysis of alterations of the p18INK4c gene in human meningiomas. Neuropathol Appl Neurobiol. 2000;26(1):67–75.

    CAS  PubMed  Google Scholar 

  114. Korhonen K, Salminen T, Raitanen J, Auvinen A, Isola J, Haapasalo H. Female predominance in meningiomas can not be explained by differences in progesterone, estrogen, or androgen receptor expression. J Neurooncol. 2006;80(1):1–7.

    CAS  PubMed  Google Scholar 

  115. Maiuri F, De Caro MB, Esposito F, Cappabianca P, Strazzullo V, Pettinato G, et al. Recurrences of meningiomas: predictive value of pathological features and hormonal and growth factors. J Neurooncol. 2007;82(1):63–8.

    PubMed  Google Scholar 

  116. Pravdenkova S, Al-Mefty O, Sawyer J, Husain M. Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg. 2006;105(2):163–73.

    CAS  PubMed  Google Scholar 

  117. Claus EB, Park PJ, Carroll R, Chan J, Black PM. Specific genes expressed in association with progesterone receptors in meningioma. Cancer Res. 2008;68(1):314–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Langford LA, Piatyszek MA, Xu R, Schold Jr SC, Wright WE, Shay JW. Telomerase activity in ordinary meningiomas predicts poor outcome. Hum Pathol. 1997;28(4):416–20.

    CAS  PubMed  Google Scholar 

  119. Leuraud P, Dezamis E, Aguirre-Cruz L, Taillibert S, Lejeune J, Robin E, et al. Prognostic value of allelic losses and telomerase activity in meningiomas. J Neurosurg. 2004;100(2):303–9.

    CAS  PubMed  Google Scholar 

  120. Simon M, Park TW, Leuenroth S, Hans VH, Loning T, Schramm J. Telomerase activity and expression of the telomerase catalytic subunit, hTERT, in meningioma progression. J Neurosurg. 2000;92(5):832–40.

    CAS  PubMed  Google Scholar 

  121. Simon M, Park TW, Koster G, Mahlberg R, Hackenbroch M, Bostrom J, et al. Alterations of INK4a(p16-p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol. 2001;55(3):149–58.

    CAS  PubMed  Google Scholar 

  122. Rushing EJ, Colvin SM, Gazdar A, Miura N, White III CL, Coimbra C, et al. Prognostic value of proliferation index and expression of the RNA component of human telomerase (hTR) in papillary meningiomas. J Neurooncol. 1999;45(3):199–207.

    CAS  PubMed  Google Scholar 

  123. Maes L, Lippens E, Kalala JP, de Ridder L. The hTERT-protein and Ki-67 labelling index in recurrent and non-recurrent meningiomas. Cell Prolif. 2005;38(1):3–12.

    CAS  PubMed  Google Scholar 

  124. Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol. 2014;24:184–9.

    CAS  PubMed  Google Scholar 

  125. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    CAS  PubMed  Google Scholar 

  126. de Robles P, McIntyre J, Kalra S, Roldan G, Cairncross G, Forsyth P, et al. Methylation status of MGMT gene promoter in meningiomas. Cancer Genet Cytogenet. 2008;187(1):25–7.

    PubMed  Google Scholar 

  127. Brokinkel B, Fischer BR, Peetz-Dienhart S, Ebel H, Sepehrnia A, Rama B, et al. MGMT promoter methylation status in anaplastic meningiomas. J Neurooncol. 2010;100(3):489–90.

    PubMed  Google Scholar 

  128. Chamberlain MC, Tsao-Wei DD, Groshen S. Temozolomide for treatment-resistant recurrent meningioma. Neurology. 2004;62(7):1210–2.

    CAS  PubMed  Google Scholar 

  129. Zhi F, Zhou G, Wang S, Shi Y, Peng Y, Shao N, et al. A microRNA expression signature predicts meningioma recurrence. Int J Cancer. 2013;132(1):128–36.

    CAS  PubMed  Google Scholar 

  130. Kliese N, Gobrecht P, Pachow D, Andrae N, Wilisch-Neumann A, Kirches E, et al. miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene. 2013;32(39):4712–20.

    CAS  PubMed  Google Scholar 

  131. Shi L, Jiang D, Sun G, Wan Y, Zhang S, Zeng Y, et al. miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas. J Neurooncol. 2012;110(2):155–62.

    CAS  PubMed  Google Scholar 

  132. Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol. 2009;29(21):5923–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Watson MA, Gutmann DH, Peterson K, Chicoine MR, Kleinschmidt-DeMasters BK, Brown HG, et al. Molecular characterization of human meningiomas by gene expression profiling using high-density oligonucleotide microarrays. Am J Pathol. 2002;161(2):665–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Wrobel G, Roerig P, Kokocinski F, Neben K, Hahn M, Reifenberger G, et al. Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. Int J Cancer. 2005;114(2):249–56.

    CAS  PubMed  Google Scholar 

  135. Fathallah-Shaykh HM, He B, Zhao LJ, Engelhard HH, Cerullo L, Lichtor T, et al. Genomic expression discovery predicts pathways and opposing functions behind phenotypes. J Biol Chem. 2003;278(26):23830–3.

    CAS  PubMed  Google Scholar 

  136. Cuevas I, Slocum A, Jun P, Costello J, Bollen A, Riggins G, et al. Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res. 2005;65(12):5070–5.

    CAS  PubMed  Google Scholar 

  137. Keller A, Ludwig N, Backes C, Romeike BF, Comtesse N, Henn W, et al. Genome wide expression profiling identifies specific deregulated pathways in meningioma. Int J Cancer. 2008;124:346–51.

    Google Scholar 

  138. Wang X, Gong Y, Wang D, Xie Q, Zheng M, Zhou Y, et al. Analysis of gene expression profiling in meningioma: deregulated signaling pathways associated with meningioma and EGFL6 overexpression in benign meningioma tissue and serum. PLoS One. 2012;7(12):e52707.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Gay E, Lages E, Ramus C, Guttin A, El Atifi M, Dupre I, et al. The heterogeneity of meningioma revealed by multiparameter analysis: infiltrative and non-infiltrative clinical phenotypes. Int J Oncol. 2011;38(5):1287–97.

    PubMed  Google Scholar 

  140. Aarhus M, Bruland O, Bredholt G, Lybaek H, Husebye ES, Krossnes BK, et al. Microarray analysis reveals down-regulation of the tumour suppressor gene WWOX and up-regulation of the oncogene TYMS in intracranial sporadic meningiomas. J Neurooncol. 2008;88(3):251–9.

    CAS  PubMed  Google Scholar 

  141. Sayagues JM, Tabernero MD, Maillo A, Trelles O, Espinosa AB, Sarasquete ME, et al. Microarray-based analysis of spinal versus intracranial meningiomas: different clinical, biological, and genetic characteristics associated with distinct patterns of gene expression. J Neuropathol Exp Neurol. 2006;65(5):445–54.

    CAS  PubMed  Google Scholar 

  142. Tabernero MD, Maillo A, Gil-Bellosta CJ, Castrillo A, Sousa P, Merino M, et al. Gene expression profiles of meningiomas are associated with tumor cytogenetics and patient outcome. Brain Pathol. 2009;19(3):409–20.

    CAS  PubMed  Google Scholar 

  143. Martinez-Glez V, Alvarez L, Franco-Hernandez C, Torres-Martin M, de Campos JM, Isla A, et al. Genomic deletions at 1p and 14q are associated with an abnormal cDNA microarray gene expression pattern in meningiomas but not in schwannomas. Cancer Genet Cytogenet. 2010;196(1):1–6.

    CAS  PubMed  Google Scholar 

  144. Perez-Magan E, Campos-Martin Y, Mur P, Fiano C, Ribalta T, Garcia JF, et al. Genetic alterations associated with progression and recurrence in meningiomas. J Neuropathol Exp Neurol. 2012;71(10):882–93.

    CAS  PubMed  Google Scholar 

  145. Menghi F, Orzan FN, Eoli M, Farinotti M, Maderna E, Pisati F, et al. DNA microarray analysis identifies CKS2 and LEPR as potential markers of meningioma recurrence. Oncologist. 2011;16(10):1440–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Serna E, Morales JM, Mata M, Gonzalez-Darder J, San Miguel T, Gil-Benso R, et al. Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma. PLoS One. 2013;8(6):e67291.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Lillehei KO, Donson AM, Kleinschmidt-DeMasters BK. Radiation-induced meningiomas: clinical, cytogenetic, and microarray features. Acta Neuropathol. 2008;116(3):289–301.

    CAS  PubMed  Google Scholar 

  148. Yamaguchi S, Terasaka S, Kobayashi H, Asaoka K, Motegi H, Nishihara H, et al. Prognostic factors for survival in patients with high-grade meningioma and recurrence-risk stratification for application of radiotherapy. PLoS One. 2014;9(5):e97108.

    PubMed Central  PubMed  Google Scholar 

  149. Ketter R, Henn W, Niedermayer I, Steilen-Gimbel H, Konig J, Zang KD, et al. Predictive value of progression-associated chromosomal aberrations for the prognosis of meningiomas: a retrospective study of 198 cases. J Neurosurg. 2001;95(4):601–7.

    CAS  PubMed  Google Scholar 

  150. Maillo A, Orfao A, Sayagues JM, Diaz P, Gomez-Moreta JA, Caballero M, et al. New classification scheme for the prognostic stratification of meningioma on the basis of chromosome 14 abnormalities, patient age, and tumor histopathology. J Clin Oncol. 2003;21(17):3285–95.

    PubMed  Google Scholar 

  151. Kim YJ, Ketter R, Henn W, Zang KD, Steudel WI, Feiden W. Histopathologic indicators of recurrence in meningiomas: correlation with clinical and genetic parameters. Virchows Arch. 2006;449(5):529–38.

    CAS  PubMed  Google Scholar 

  152. Maillo A, Orfao A, Espinosa AB, Sayagues JM, Merino M, Sousa P, et al. Early recurrences in histologically benign/grade I meningiomas are associated with large tumors and coexistence of monosomy 14 and del(1p36) in the ancestral tumor cell clone. Neuro Oncol. 2007;9(4):438–46.

    PubMed Central  PubMed  Google Scholar 

  153. Domingues PH, Sousa P, Otero A, Goncalves JM, Ruiz L, de Oliveira C, et al. Proposal for a new risk stratification classification for meningioma based on patient age, WHO tumor grade, size, localization, and karyotype. Neuro Oncol. 2014;16(5):735–47.

    PubMed  Google Scholar 

  154. Weisman AS, Raguet SS, Kelly PA. Characterization of the epidermal growth factor receptor in human meningioma. Cancer Res. 1987;47(8):2172–6.

    CAS  PubMed  Google Scholar 

  155. Maxwell M, Galanopoulos T, Hedley-Whyte ET, Black PM, Antoniades HN. Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products. Int J Cancer. 1990;46(1):16–21.

    CAS  PubMed  Google Scholar 

  156. Baumgarten P, Brokinkel B, Zinke J, Zachskorn C, Ebel H, Albert FK, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 in primary and recurrent WHO grade III meningiomas. Histol Histopathol. 2013;28(9):1157–66.

    PubMed  Google Scholar 

  157. Lichtor T, Kurpakus MA, Gurney ME. Expression of insulin-like growth factors and their receptors in human meningiomas. J Neurooncol. 1993;17(3):183–90.

    CAS  PubMed  Google Scholar 

  158. Johnson MD, Woodard A, Kim P, Frexes-Steed M. Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J Neurosurg. 2001;94(2):293–300.

    CAS  PubMed  Google Scholar 

  159. Mawrin C, Sasse T, Kirches E, Kropf S, Schneider T, Grimm C, et al. Different activation of mitogen-activated protein kinase and Akt signaling is associated with aggressive phenotype of human meningiomas. Clin Cancer Res. 2005;11(11):4074–82.

    CAS  PubMed  Google Scholar 

  160. Johnson MD, Okedli E, Woodard A, Toms SA, Allen GS. Evidence for phosphatidylinositol 3-kinase-Akt-p7S6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in meningioma cells. J Neurosurg. 2002;97(3):668–75.

    CAS  PubMed  Google Scholar 

  161. Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG. Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol. 2009;29(15):4235–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO, et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol. 2009;29(15):4250–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Castelli MG, Chiabrando C, Fanelli R, Martelli L, Butti G, Gaetani P, et al. Prostaglandin and thromboxane synthesis by human intracranial tumors. Cancer Res. 1989;49(6):1505–8.

    CAS  PubMed  Google Scholar 

  164. Kang HC, Kim IH, Park CI, Park SH. Immunohistochemical analysis of cyclooxygenase-2 and brain fatty acid binding protein expression in grades I-II meningiomas: correlation with tumor grade and clinical outcome after radiotherapy. Neuropathology. 2014 Apr 30. doi: 10.1111/neup.12128. [Epub ahead of print].

    Google Scholar 

  165. Johnson MD, Horiba M, Winnier AR, Arteaga CL. The epidermal growth factor receptor is associated with phospholipase C-gamma 1 in meningiomas. Hum Pathol. 1994;25(2):146–53.

    CAS  PubMed  Google Scholar 

  166. Johnson MD, Shaw AK, O’Connell MJ, Sim FJ, Moses HL. Analysis of transforming growth factor beta receptor expression and signaling in higher grade meningiomas. J Neurooncol. 2011;103(2):277–85.

    PubMed  Google Scholar 

  167. Nagashima G, Asai J, Suzuki R, Fujimoto T. Different distribution of c-myc and MIB-1 positive cells in malignant meningiomas with reference to TGFs, PDGF, and PgR expression. Brain Tumor Pathol. 2001;18(1):1–5.

    CAS  PubMed  Google Scholar 

  168. Johnson MD, O’Connell MJ, Vito F, Pilcher W. Bone morphogenetic protein 4 and its receptors are expressed in the leptomeninges and meningiomas and signal via the Smad pathway. J Neuropathol Exp Neurol. 2009;68(11):1177–83.

    CAS  PubMed  Google Scholar 

  169. Wen PY, Yung WK, Lamborn KR, Norden AD, Cloughesy TF, Abrey LE, et al. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01-08). Neuro Oncol. 2009;11(6):853–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Reardon DA, Norden AD, Desjardins A, Vredenburgh JJ, Herndon II JE, Coan A, et al. Phase II study of Gleevec((R)) plus hydroxyurea (HU) in adults with progressive or recurrent meningioma. J Neurooncol. 2012;106(2):409–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Norden AD, Raizer JJ, Abrey LE, Lamborn KR, Lassman AB, Chang SM, et al. Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma. J Neurooncol. 2009;27:15s.

    Google Scholar 

  172. Nayak L, Iwamoto FM, Rudnick JD, Norden AD, Lee EQ, Drappatz J, et al. Atypical and anaplastic meningiomas treated with bevacizumab. J Neurooncol. 2012;109(1):187–93.

    CAS  PubMed  Google Scholar 

  173. Moazzam AA, Wagle N, Zada G. Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus. 2013;35(6):E18.

    PubMed  Google Scholar 

  174. Kaley T, Barani I, Chamberlain M, McDermott M, Panageas K, Raizer J, et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol. 2014;16:829–40.

    PubMed  Google Scholar 

  175. Ammoun S, Hanemann CO. Emerging therapeutic targets in schwannomas and other merlin-deficient tumors. Nat Rev Neurol. 2011;7(7):392–9.

    CAS  PubMed  Google Scholar 

  176. Li W, Cooper J, Karajannis MA, Giancotti FG. Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep. 2012;13(3):204–15.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mawrin M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mawrin, C., Kalamarides, M. (2015). Meningiomas. In: Karajannis, M., Zagzag, D. (eds) Molecular Pathology of Nervous System Tumors. Molecular Pathology Library, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1830-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1830-0_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1829-4

  • Online ISBN: 978-1-4939-1830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics