Skip to main content

Hereditary Predisposition to Primary CNS Tumors

  • Chapter
  • First Online:
Molecular Pathology of Nervous System Tumors

Abstract

The majority of primary central nervous system (CNS) tumors in children and adults occur sporadically, i.e., in patients with an unremarkable family history and no clinical evidence of a hereditary disorder, such as a tumor predisposition syndrome. Nevertheless, some brain tumors arise in the setting of such syndromes, such as neurofibromatosis, and the underlying condition is often not recognized until after a tumor is diagnosed. Tumors arising in patients with such syndromes sometimes have a different biological behavior compared to their sporadic counterparts, afflicted patients may require additional treatments or screening, and multiple family members may be affected. Therefore, it is important for those involved in the diagnosis, treatment or follow-up of brain tumor patients to be knowledgeable about known hereditary predispositions relevant to this population. As genome-wide sequencing is increasingly applied, it can be expected that additional hereditary predispositions to CNS tumors will be identified in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56:7–15.

    PubMed Central  PubMed  Google Scholar 

  2. Tabori U, Shlien A, Baskin B, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28:1995–2001.

    CAS  PubMed  Google Scholar 

  3. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355:1345–56.

    CAS  PubMed  Google Scholar 

  4. Evans DG. Neurofibromatosis 2 [Bilateral acoustic neurofibromatosis, central neurofibromatosis, NF2, neurofibromatosis type II]. Genet Med. 2009;11:599–610.

    PubMed  Google Scholar 

  5. Testa JR, Malkin D, Schiffman JD. Connecting molecular pathways to hereditary cancer risk syndromes. Am Soc Clin Oncol Educ Book. 2013:81–90. doi:10.1200/EdBook_AM.2013.33.81.

  6. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123:124–33.

    PubMed  Google Scholar 

  7. Szudek J, Evans DG, Friedman JM. Patterns of associations of clinical features in neurofibromatosis 1 (NF1). Hum Genet. 2003;112:289–97.

    PubMed  Google Scholar 

  8. Ferner RE, Huson SM, Thomas N, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44:81–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet. 2001;68:1110–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Brems H, Beert E, de Ravel T, Legius E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol. 2009;10:508–15.

    CAS  PubMed  Google Scholar 

  11. Rubin JB, Gutmann DH. Neurofibromatosis type 1—a model for nervous system tumour formation? Nat Rev Cancer. 2005;5:557–64.

    CAS  PubMed  Google Scholar 

  12. Wimmer K, Yao S, Claes K, Kehrer-Sawatzki H, Tinschert S, De Raedt T, Legius E, Callens T, Beiglböck H, Maertens O, Messiaen L. Spectrum of single- and multiexon NF1 copy number changes in a cohort of 1,100 unselected NF1 patients. Genes Chromosomes Cancer. 2006;45(3):265–76. PubMed PMID: 16283621.

    Google Scholar 

  13. Jones DT, Hutter B, Jager N, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Google Scholar 

  15. Rankin SL, Zhu G, Baker SJ. Review: insights gained from modelling high-grade glioma in the mouse. Neuropathol Appl Neurobiol. 2012;38:254–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Thangarajh M, Gutmann DH. Review: low-grade gliomas as neurodevelopmental disorders: insights from mouse models of neurofibromatosis-1. Neuropathol Appl Neurobiol. 2012;38:241–53.

    CAS  PubMed  Google Scholar 

  17. Sun P, Yoshizuka N, New L, et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell. 2007;128:295–308.

    CAS  PubMed  Google Scholar 

  18. Rosenfeld A, Listernick R, Charrow J, Goldman S. Neurofibromatosis type 1 and high-grade tumors of the central nervous system. Childs Nerv Syst. 2010;26:663–7.

    PubMed  Google Scholar 

  19. Huttner AJ, Kieran MW, Yao X, et al. Clinicopathologic study of glioblastoma in children with neurofibromatosis type 1. Pediatr Blood Cancer. 2010;54:890–6.

    PubMed  Google Scholar 

  20. Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61:189–98.

    CAS  PubMed  Google Scholar 

  21. Sharif S, Ferner R, Birch JM, et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol. 2006;24:2570–5.

    PubMed  Google Scholar 

  22. Okuno T, Prensky AL, Gado M. The moyamoya syndrome associated with irradiation of an optic glioma in children: report of two cases and review of the literature. Pediatr Neurol. 1985;1:311–6.

    CAS  PubMed  Google Scholar 

  23. Ibrahimi DM, Tamargo RJ, Ahn ES. Moyamoya disease in children. Childs Nerv Syst. 2010;26:1297–308.

    PubMed  Google Scholar 

  24. Sun T, Gianino SM, Jackson E, Piwnica-Worms D, Gutmann DH, Rubin JB. CXCL12 alone is insufficient for gliomagenesis in Nf1 mutant mice. J Neuroimmunol. 2010;224:108–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Warrington NM, Gianino SM, Jackson E, et al. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 2010;70:5717–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Robertson KA, Nalepa G, Yang FC, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13:1218–24.

    CAS  PubMed  Google Scholar 

  27. Yang FC, Ingram DA, Chen S, et al. Nf1-dependent tumors require a microenvironment containing Nf1+/− and c-kit-dependent bone marrow. Cell. 2008;135:437–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Li FP, Fraumeni Jr JF. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med. 1969;71:747–52.

    CAS  PubMed  Google Scholar 

  29. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    PubMed Central  PubMed  Google Scholar 

  30. Li FP, Fraumeni JF, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48:5358–62.

    CAS  PubMed  Google Scholar 

  31. Chompret A, Abel A, Stoppa-Lyonnet D, Brugieres L, Pages S, Feunteun J, Bonaiti-Pellie C. Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet. 2001;38:43–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, Han JH, Lowstuter K, Longmate J, Sommer SS, Weitzel JN. Beyond Li-Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27:1250–6.

    CAS  PubMed  Google Scholar 

  33. Tinat J, Bougeard G, Baert-Desurmont S, Vasseur S, Martin C, Bouvignies E, Caron O, Bressac-de Paillerets B, Berthet P, Dugast C, Bonaiti-Pellie C, Stoppa-Lyonnet D, Frebourg T. 2009 Version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27:e108–9.

    PubMed  Google Scholar 

  34. Ruijs MW, Verhoef S, Rookus MA, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47:421–8.

    CAS  PubMed  Google Scholar 

  35. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.

    CAS  PubMed  Google Scholar 

  36. Wang PY, Ma W, Park JY, et al. Increased oxidative metabolism in the Li-Fraumeni syndrome. N Engl J Med. 2013;368:1027–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31.

    CAS  PubMed  Google Scholar 

  38. Lang GA, Iwakuma T, Suh YA, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861–72.

    CAS  PubMed  Google Scholar 

  39. England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol. 2013;34:2063–74.

    CAS  PubMed  Google Scholar 

  40. Pollack IF, Finkelstein SD, Woods J, et al. Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med. 2002;346:420–7.

    CAS  PubMed  Google Scholar 

  41. Villani A, Tabori U, Schiffman J, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12:559–67.

    CAS  PubMed  Google Scholar 

  42. Krzyzankova M, Mertsch S, Koos B, et al. Loss of TP53 expression in immortalized choroid plexus epithelial cells results in increased resistance to anticancer agents. J Neurooncol. 2012;109:449–55.

    CAS  PubMed  Google Scholar 

  43. Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23):2927–35.

    PubMed  Google Scholar 

  44. Rausch T, Jones DT, Zapatka M, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148:59–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Masciari S, Van den Abbeele AD, Diller LR, et al. F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. JAMA. 2008;299:1315–9.

    CAS  PubMed  Google Scholar 

  46. Kony SJ, de Vathaire F, Chompret A, et al. Radiation and genetic factors in the risk of second malignant neoplasms after a first cancer in childhood. Lancet. 1997;350:91–5.

    CAS  PubMed  Google Scholar 

  47. Heymann S, Delaloge S, Rahal A, et al. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol. 2010;5:104.

    PubMed Central  PubMed  Google Scholar 

  48. Talwalkar SS, Yin CC, Naeem RC, Hicks MJ, Strong LC, Abruzzo LV. Myelodysplastic syndromes arising in patients with germline TP53 mutation and Li-Fraumeni syndrome. Arch Pathol Lab Med. 2010;134:1010–5.

    PubMed  Google Scholar 

  49. Wimmer K, Etzler J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet. 2008;124:105–22.

    PubMed  Google Scholar 

  50. Durno CA, Holter S, Sherman PM, Gallinger S. The gastrointestinal phenotype of germline biallelic mismatch repair gene mutations. Am J Gastroenterol. 2010;105:2449–56.

    CAS  PubMed  Google Scholar 

  51. Paraf F, Jothy S, Van Meir EG. Brain tumor-polyposis syndrome: two genetic diseases? J Clin Oncol. 1997;15(7):2744–58.

    CAS  PubMed  Google Scholar 

  52. Bakry D, Aronson M, Durno C, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer. 2014;50(5):987–96. pii:S0959-8049(13)01070-8.

    PubMed  Google Scholar 

  53. Wang Q, Montmain G, Ruano E, et al. Neurofibromatosis type 1 gene as a mutational target in a mismatch repair-deficient cell type. Hum Genet. 2003;112:117–23.

    CAS  PubMed  Google Scholar 

  54. Edelmann W, Yang K, Umar A, et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell. 1997;91:467–77.

    CAS  PubMed  Google Scholar 

  55. Prolla TA, Baker SM, Harris AC, et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet. 1998;18:276–9.

    CAS  PubMed  Google Scholar 

  56. Van Meir EG. “Turcot’s syndrome”: phenotype of brain tumors, survival and mode of inheritance. Int J Cancer. 1998;75:162–4.

    PubMed  Google Scholar 

  57. Lusis EA, Travers S, Jost SC, Perry A. Glioblastomas with giant cell and sarcomatous features in patients with turcot syndrome type 1: a clinicopathological study of 3 cases. Neurosurgery. 2010;67(3):811–7; discussion 7.

    PubMed  Google Scholar 

  58. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.

    CAS  PubMed  Google Scholar 

  59. Carol Durno CH, Aronson M, Holter S, Waltho S, Parkin P, Gallinger S, Farah R, Chan H, Bouffet E, Bartels U, Huang A, Druker H, Malkin D, Tabori U. Distinctive clinical, genetic and cancer features of children with mismatch repair cancer susceptibility and RAS/MAPK syndromes. Neuro Oncol. 2010;12:ii35.

    Google Scholar 

  60. Gottschling S, Reinhard H, Pagenstecher C, et al. Hypothesis: possible role of retinoic acid therapy in patients with biallelic mismatch repair gene defects. Eur J Pediatr. 2008;167:225–9.

    PubMed  Google Scholar 

  61. Azizi E, Friedman J, Pavlotsky F, et al. Familial cutaneous malignant melanoma and tumors of the nervous system. A hereditary cancer syndrome. Cancer. 1995;76:1571–8.

    CAS  PubMed  Google Scholar 

  62. Bahuau M, Vidaud D, Jenkins RB, et al. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res. 1998;58:2298–303.

    CAS  PubMed  Google Scholar 

  63. Randerson-Moor JA, Harland M, Williams S, et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet. 2001;10:55–62.

    CAS  PubMed  Google Scholar 

  64. Solomon DA, Kim JS, Cronin JC, et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res. 2008;68:10300–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Gorlin RJ, Goltz RW. Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med. 1960;262:908–12.

    CAS  PubMed  Google Scholar 

  66. Evans DGR, Ramsden RT, Shenton A, Gokhale C, Bowers NL, Huson SM, Wallace A. Mosaicism in NF2 an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including MLPA. J Med Genet. 2007;44:424–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kimonis VE, Mehta SG, Digiovanna JJ, Bale SJ, Pastakia B. Radiological features in 82 patients with nevoid basal cell carcinoma (NBCC or Gorlin) syndrome. Genet Med. 2004;6:495–502.

    PubMed  Google Scholar 

  68. Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272:1668–71.

    CAS  PubMed  Google Scholar 

  69. Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31:306–10.

    CAS  PubMed  Google Scholar 

  70. Brugieres L, Remenieras A, Pierron G, et al. High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J Clin Oncol. 2012;30:2087–93.

    CAS  PubMed  Google Scholar 

  71. Huse JT, Holland EC. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol. 2009;19:132–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Klein RD, Dykas DJ, Bale AE. Clinical testing for the nevoid basal cell carcinoma syndrome in a DNA diagnostic laboratory. Genet Med. 2005;7:611–9.

    CAS  PubMed  Google Scholar 

  73. Marsh A, Wicking C, Wainwright B, Chenevix-Trench G. DHPLC analysis of patients with Nevoid Basal Cell Carcinoma Syndrome reveals novel PTCH missense mutations in the sterol-sensing domain. Hum Mutat. 2005;26:283.

    CAS  PubMed  Google Scholar 

  74. Nagao K, Fujii K, Saito K, Sugita K, Endo M, Motojima T, Hatsuse H, Miyashita T. Entire PTCH1 deletion is a common event in point mutation-negative cases with nevoid basal cell carcinoma syndrome in Japan. Clin Genet. 2011;79:196–8.

    CAS  PubMed  Google Scholar 

  75. Muller EA, Swaroop A, Atkin JF, Elliott AM, Chudley AE, Clark RD, Everman DB, Garner S, Hall BD, Herman GE, Kivuva E, Ramanathan S, Stevenson DA, Stockton DW, Hudgins L. Microdeletion 9q22.3 syndrome includes metopic craniosynostosis, hydrocephalus, macrosomia and developmental delay. Am J Med Genet A. 2012;158A:391–9.

    PubMed  Google Scholar 

  76. Herzberg JJ, Wiskemann A. [The fifth phakomatosis. Basal cell nevus with hereditary malformation and medulloblastoma]. Dermatologica. 1963;126:106–23.

    CAS  PubMed  Google Scholar 

  77. Amlashi SF, Riffaud L, Brassier G, Morandi X. Nevoid basal cell carcinoma syndrome: relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer. 2003;98:618–24.

    PubMed  Google Scholar 

  78. Giangaspero F, Perilongo G, Fondelli MP, et al. Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg. 1999;91:971–7.

    CAS  PubMed  Google Scholar 

  79. Garre ML, Cama A, Bagnasco F, et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome—a new clinical perspective. Clin Cancer Res. 2009;15:2463–71.

    PubMed  Google Scholar 

  80. Rutkowski S, von Hoff K, Emser A, et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol. 2010;28:4961–8.

    PubMed  Google Scholar 

  81. Pribila JT, Ronan SM, Trobe JD. Multiple intracranial meningiomas causing papilledema and visual loss in a patient with nevoid Basal cell carcinoma syndrome. J Neuroophthalmol. 2008;28:41–6.

    PubMed  Google Scholar 

  82. Evans DG, Farndon PA, Burnell LD, Gattamaneni HR, Birch JM. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br J Cancer. 1991;64:959–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Bree AF, Shah MR. Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS). Am J Med Genet A. 2011;155A:2091–7.

    PubMed  Google Scholar 

  84. Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361:1173–8.

    CAS  PubMed  Google Scholar 

  85. Crail HW. Multiple primary malignancies arising in the rectum, brain, and thyroid; report of a case. U S Nav Med Bull. 1949;49:123–8.

    CAS  PubMed  Google Scholar 

  86. Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332:839–47.

    CAS  PubMed  Google Scholar 

  87. Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5.

    CAS  PubMed  Google Scholar 

  88. Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29(11):1408–14.

    PubMed  Google Scholar 

  89. Pfister S, Remke M, Benner A, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 2009;27:1627–36.

    PubMed  Google Scholar 

  90. Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24:101–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Eiler ME, Frohnmayer D, Frohnmayer L, Larsen K, Olsen J, editors. Fanconi anemia: guidelines for diagnosis and management. 3rd ed. Eugene: Fanconi Anemia Research Fund Inc; 2008.

    Google Scholar 

  92. Auerbach AD. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol. 1993;21:731–3.

    CAS  PubMed  Google Scholar 

  93. Ameziane N, Errami A, Léveillé F, Fontaine C, de Vries Y, van Spaendonk RM, de Winter JP, Pals G, Joenje H. Genetic subtyping of Fanconi anemia by comprehensive mutation screening. Hum Mutat. 2008;29:159–66.

    CAS  PubMed  Google Scholar 

  94. Whitney MA, Saito H, Jakobs PM, Gibson RA, Moses RE, Grompe M. A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nat Genet. 1993;4:202–5.

    CAS  PubMed  Google Scholar 

  95. Alter BP, Giri N, Savage SA, Peters JA, Loud JT, Leathwood L, Carr AG, Greene MH, Rosenberg PS. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150:179–88.

    PubMed Central  PubMed  Google Scholar 

  96. Alter BP. Cancer in Fanconi anemia, 1927–2001. Cancer. 2003;97:425–40.

    PubMed  Google Scholar 

  97. de Chadarevian JP, Vekemans M, Bernstein M. Fanconi’s anemia, medulloblastoma, Wilms’ tumor, horseshoe kidney, and gonadal dysgenesis. Arch Pathol Lab Med. 1985;109:367–9.

    PubMed  Google Scholar 

  98. Alter BP, Tenner MS. Brain tumors in patients with Fanconi’s anemia. Arch Pediatr Adolesc Med. 1994;148:661–3.

    CAS  PubMed  Google Scholar 

  99. Alter BP, Rosenberg PS, Brody LC. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet. 2007;44:1–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Wilson BT, Douglas SF, Polvikoski T. Astrocytoma in a breast cancer lineage: part of the BRCA2 phenotype? J Clin Oncol. 2010;28:e596–8.

    PubMed  Google Scholar 

  101. D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.

    PubMed  Google Scholar 

  102. Offit K, Levran O, Mullaney B, et al. Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J Natl Cancer Inst. 2003;95:1548–51.

    CAS  PubMed  Google Scholar 

  103. Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39:162–4.

    CAS  PubMed  Google Scholar 

  104. Bakker ST, de Winter JP, te Riele H. Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models. Dis Model Mech. 2013;6:40–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Houghtaling S, Timmers C, Noll M, et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev. 2003;17:2021–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Ruud E, Wesenberg F. Microcephalus, medulloblastoma and excessive toxicity from chemotherapy: an unusual presentation of Fanconi anaemia. Acta Paediatr. 2001;90:580–3.

    CAS  PubMed  Google Scholar 

  107. Carden CP, Yap TA, Kaye SB. PARP inhibition: targeting the Achilles’ heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol. 2010;22:473–80.

    CAS  PubMed  Google Scholar 

  108. Leung K, Saif MW. BRCA-associated pancreatic cancer: the evolving management. JOP. 2013;14:149–51.

    PubMed  Google Scholar 

  109. Choy W, Kim W, Nagasawa D, et al. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus. 2011;30:E6.

    PubMed  Google Scholar 

  110. Pulst SM, Rouleau GA, Marineau C, Fain P, Sieb JP. Familial meningioma is not allelic to neurofibromatosis 2. Neurology. 1993;43:2096–8.

    CAS  PubMed  Google Scholar 

  111. Asgharian B, Chen YJ, Patronas NJ, et al. Meningiomas may be a component tumor of multiple endocrine neoplasia type 1. Clin Cancer Res. 2004;10:869–80.

    CAS  PubMed  Google Scholar 

  112. van den Munckhof P, Christiaans I, Kenter SB, Baas F, Hulsebos TJ. Germline SMARCB1 mutation predisposes to multiple meningiomas and schwannomas with preferential location of cranial meningiomas at the falx cerebri. Neurogenetics. 2012;13:1–7.

    PubMed  Google Scholar 

  113. Smith MJ, O’Sullivan J, Bhaskar SS, et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet. 2013;45:295–8.

    CAS  PubMed  Google Scholar 

  114. Aavikko M, Li SP, Saarinen S, et al. Loss of SUFU function in familial multiple meningioma. Am J Hum Genet. 2012;91:520–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Clark VE, Erson-Omay EZ, Serin A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339:1077–80.

    CAS  PubMed  Google Scholar 

  116. Brastianos PK, Horowitz PM, Santagata S, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45:285–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277:805–8.

    PubMed  Google Scholar 

  118. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6:729–34.

    CAS  PubMed  Google Scholar 

  119. Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol. 1998;13:624–8.

    CAS  PubMed  Google Scholar 

  120. Franz DN, Leonard J, Tudor C, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59:490–8.

    CAS  PubMed  Google Scholar 

  121. Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363:1801–11.

    CAS  PubMed  Google Scholar 

  122. Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381:125–32.

    CAS  PubMed  Google Scholar 

  123. Paul E, Thiele E. Efficacy of sirolimus in treating tuberous sclerosis and lymphangioleiomyomatosis. N Engl J Med. 2008;358:190–2.

    CAS  PubMed  Google Scholar 

  124. Ehninger D, Han S, Shilyansky C, et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med. 2008;14:843–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Wiegand G, May TW, Ostertag P, Boor R, Stephani U, Franz DN. Everolimus in tuberous sclerosis patients with intractable epilepsy: A treatment option? Eur J Paediatr Neurol. 2013;17(6):631–8.

    PubMed  Google Scholar 

  126. Krueger DA, Care MM, Agricola K, Tudor C, Mays M, Franz DN. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology. 2013;80:574–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Bonnin JM, Rubinstein LJ, Palmer NF, Beckwith JB. The association of embryonal tumors originating in the kidney and in the brain. A report of seven cases. Cancer. 1984;54:2137–46.

    CAS  PubMed  Google Scholar 

  128. Rorke LB, Packer R, Biegel J. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J Neurooncol. 1995;24:21–8.

    CAS  PubMed  Google Scholar 

  129. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59:74–9.

    CAS  PubMed  Google Scholar 

  130. Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65:1342–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Brat DJ, Parisi JE, Kleinschmidt-DeMasters BK, et al. Surgical neuropathology update: a review of changes introduced by the WHO classification of tumours of the central nervous system, 4th edition. Arch Pathol Lab Med. 2008;132:993–1007.

    PubMed  Google Scholar 

  132. Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6.

    CAS  PubMed  Google Scholar 

  133. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92.

    CAS  PubMed  Google Scholar 

  134. Vries RG, Bezrookove V, Zuijderduijn LM, et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev. 2005;19:665–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Jagani Z, Mora-Blanco EL, Sansam CG, et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med. 2010;16:1429–33.

    CAS  PubMed  Google Scholar 

  136. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci U S A. 2000;97:13796–800.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Chi SN, Zimmerman MA, Yao X, et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol. 2009;27:385–9.

    PubMed Central  PubMed  Google Scholar 

  138. Gardner SL, Asgharzadeh S, Green A, Horn B, McCowage G, Finlay J. Intensive induction chemotherapy followed by high dose chemotherapy with autologous hematopoietic progenitor cell rescue in young children newly diagnosed with central nervous system atypical teratoid rhabdoid tumors. Pediatr Blood Cancer. 2008;51:235–40.

    PubMed  Google Scholar 

  139. Tekautz TM, Fuller CE, Blaney S, et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 2005;23:1491–9.

    CAS  PubMed  Google Scholar 

  140. Rekhi B, Jambhekar NA. Immunohistochemical validation of INI1/SMARCB1 in a spectrum of musculoskeletal tumors: an experience at a Tertiary Cancer Referral Centre. Pathol Res Pract. 2013;209(12):758–66.

    CAS  PubMed  Google Scholar 

  141. Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJ, Hunter-Schaedle K, Kalpana GV, Korf B, Messiaen L, Papi L, Ratner N, Sherman LS, Smith MJ, Stemmer-Rachamimov AO, Vitte J, Giovannini M. Update from the 2011 International Schwannomatosis Workshop: from genetics to diagnostic criteria. Am J Med Genet A. 2013;161A(3):405–16.

    PubMed  Google Scholar 

  142. Hadfield KD, Newman WG, Bowers NL, et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet. 2008;45:332–9.

    CAS  PubMed  Google Scholar 

  143. Piotrowski A, Xie J, Liu YF, et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet. 2014;46(2):182–7.

    CAS  PubMed  Google Scholar 

  144. Melmon KL, Rosen SW. Lindau’s disease. Review of the literature and study of a large kindred. Am J Med. 1964;36:595–617.

    CAS  PubMed  Google Scholar 

  145. Lonser RR, Glenn GM, Walther M, et al. von Hippel-Lindau disease. Lancet. 2003;361:2059–67.

    CAS  PubMed  Google Scholar 

  146. Butman JA, Linehan WM, Lonser RR. Neurologic manifestations of von Hippel-Lindau disease. JAMA. 2008;300:1334–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19:617–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P, Walther M, Pack S, Hurley K, Andrey C, Klausner R, Linehan WM. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum Mutat. 1998;12:417–23.

    CAS  PubMed  Google Scholar 

  149. Hoebeeck J, van der Luijt R, Poppe B, De Smet E, Yigit N, Claes K, Zewald R, de Jong GJ, De Paepe A, Speleman F, Vandesompele J. Rapid detection of VHL exon deletions using real-time quantitative PCR. Lab Invest. 2005;85:24–33.

    CAS  PubMed  Google Scholar 

  150. Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D, Maher ER, Stanley AJ, Harnden P, Joyce A, Knowles M, Selby PJ. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res. 2006;66:2000–11.

    CAS  PubMed  Google Scholar 

  151. Sgambati MT, Stolle C, Choyke PL, Walther MM, Zbar B, Linehan WM, Glenn GM. Mosaicism in von Hippel-Lindau disease: lessons from kindreds with germline mutations identified in offspring with mosaic parents. Am J Hum Genet. 2000;66:84–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.

    CAS  PubMed  Google Scholar 

  153. Kaelin Jr WG. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008;8:865–73.

    CAS  PubMed  Google Scholar 

  154. Clark PE, Cookson MS. The von Hippel-Lindau gene: turning discovery into therapy. Cancer. 2008;113:1768–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Inoue K, Fry EA, Taneja P. Recent progress in mouse models for tumor suppressor genes and its implications in human cancer. Clin Med Insights Oncol. 2013;7:103–22.

    PubMed Central  PubMed  Google Scholar 

  156. Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ. Generation of a mouse model of Von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1alpha. Cancer Res. 2011;71:6848–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Choyke PL, Glenn GM, Walther MM, Patronas NJ, Linehan WM, Zbar B. Von Hippel-Lindau disease: genetic, clinical, and imaging features. Radiology. 1995;194:629–42.

    CAS  PubMed  Google Scholar 

  158. Rasmussen A, Alonso E, Ochoa A, et al. Uptake of genetic testing and long-term tumor surveillance in von Hippel-Lindau disease. BMC Med Genet. 2010;11:4.

    PubMed Central  PubMed  Google Scholar 

  159. Niemela M, Maenpaa H, Salven P, et al. Interferon alpha-2a therapy in 18 hemangioblastomas. Clin Cancer Res. 2001;7:510–6.

    CAS  PubMed  Google Scholar 

  160. Madhusudan S, Deplanque G, Braybrooke JP, et al. Antiangiogenic therapy for von Hippel-Lindau disease. JAMA. 2004;291:943–4.

    CAS  PubMed  Google Scholar 

  161. Piribauer M, Czech T, Dieckmann K, et al. Stabilization of a progressive hemangioblastoma under treatment with thalidomide. J Neurooncol. 2004;66:295–9.

    PubMed  Google Scholar 

  162. Lloyd 2nd KM, Dennis M. Cowden’s disease. A possible new symptom complex with multiple system involvement. Ann Intern Med. 1963;58:136–42.

    PubMed  Google Scholar 

  163. Padberg GW, Schot JD, Vielvoye GJ, Bots GT, de Beer FC. Lhermitte-Duclos disease and Cowden disease: a single phakomatosis. Ann Neurol. 1991;29:517–23.

    CAS  PubMed  Google Scholar 

  164. Robinson S, Cohen AR. Cowden disease and Lhermitte-Duclos disease: an update. Case report and review of the literature. Neurosurg Focus. 2006;20:E6.

    Google Scholar 

  165. Lachlan KL, Lucassen AM, Bunyan D, Temple IK. Cowden syndrome and Bannayan Riley Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers. J Med Genet. 2007;44:579–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11:687–94.

    CAS  PubMed  Google Scholar 

  167. Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet. 2008;16:1289–300.

    CAS  PubMed  Google Scholar 

  168. Lok C, Viseux V, Avril MF, et al. Brain magnetic resonance imaging in patients with Cowden syndrome. Medicine (Baltimore). 2005;84:129–36.

    Google Scholar 

  169. Marsh DJ, Trahair TN, Martin JL, et al. Rapamycin treatment for a child with germline PTEN mutation. Nat Clin Pract Oncol. 2008;5:357–61.

    CAS  PubMed  Google Scholar 

  170. Abel TW, Baker SJ, Fraser MM, et al. Lhermitte-Duclos disease: a report of 31 cases with immunohistochemical analysis of the PTEN/AKT/mTOR pathway. J Neuropathol Exp Neurol. 2005;64:341–9.

    PubMed  Google Scholar 

  171. Asthagiri AR, Parry DM, Butman JA, et al. Neurofibromatosis type 2. Lancet. 2009;373:1974–86.

    CAS  PubMed  Google Scholar 

  172. Evans DG, Baser ME, O’Reilly B, et al. Management of the patient and family with neurofibromatosis 2: a consensus conference statement. Br J Neurosurg. 2005;19:5–12.

    CAS  PubMed  Google Scholar 

  173. Baser ME, Friedman JM, Wallace AJ, Ramsden RT, Joe H, Evans DG. Evaluation of clinical diagnostic criteria for neurofibromatosis 2. Neurology. 2002;59(11):1759–65.

    CAS  PubMed  Google Scholar 

  174. Wallace AJ, Watson CJ, Oward E, Evans DG, Elles RG. Mutation scanning of the NF2 gene: an improved service based on meta-PCR/sequencing, dosage analysis, and loss of heterozygosity analysis. Genet Test. 2004;8:368–80.

    CAS  PubMed  Google Scholar 

  175. Kluwe L, Nygren AO, Errami A, Heinrich B, Matthies C, Tatagiba M, Mautner V. Screening for large mutations of the NF2 gene. Genes Chromosomes Cancer. 2005;42:384–91.

    CAS  PubMed  Google Scholar 

  176. Evans DG, Kalamarides M, Hunter-Schaedle K, et al. Consensus recommendations to accelerate clinical trials for neurofibromatosis type 2. Clin Cancer Res. 2009;15:5032–9.

    PubMed  Google Scholar 

  177. Trofatter JA, MacCollin MM, Rutter JL, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993;72:791–800.

    CAS  PubMed  Google Scholar 

  178. Rouleau GA, Merel P, Lutchman M, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature. 1993;363:515–21.

    CAS  PubMed  Google Scholar 

  179. Li W, Cooper J, Karajannis MA, Giancotti FG. Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep. 2012;13(3):204–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Evans DG, Birch JM, Ramsden RT. Paediatric presentation of type 2 neurofibromatosis. Arch Dis Child. 1999;81:496–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Mautner VF, Tatagiba M, Lindenau M, et al. Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am J Roentgenol. 1995;165:951–5.

    CAS  PubMed  Google Scholar 

  182. Plotkin SR, Stemmer-Rachamimov AO, Barker 2nd FG, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med. 2009;361:358–67.

    CAS  PubMed  Google Scholar 

  183. Blakeley JO, Evans DG, Adler J, Brackmann D, Chen R, Ferner RE, Hanemann CO, Harris G, Huson SM, Jacob A, Kalamarides M, Karajannis MA, Korf BR, Mautner VF, McClatchey AI, Miao H, Plotkin SR, Slattery 3rd W, Stemmer-Rachamimov AO, Welling DB, Wen PY, Widemann B, Hunter-Schaedle K, Giovannini M. Consensus recommendations for current treatments and accelerating clinical trials for patients with neurofibromatosis type 2. Am J Med Genet A. 2012;158A(1):24–41.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias A. Karajannis M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabori, U., Karajannis, M.A., Pappas, J.G. (2015). Hereditary Predisposition to Primary CNS Tumors. In: Karajannis, M., Zagzag, D. (eds) Molecular Pathology of Nervous System Tumors. Molecular Pathology Library, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1830-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1830-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1829-4

  • Online ISBN: 978-1-4939-1830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics