Skip to main content

Inherited and Somatic Genetics of Pancreatic Neuroendocrine Tumors

  • Chapter
  • First Online:
Management of Pancreatic Neuroendocrine Tumors

Abstract

Pancreatic neuroendocrine tumors (PNETs) are rare tumors, categorized as functional and nonfunctional tumors based on whether they can retain the ability to release hormones such as insulin, gastrin, or glucagon and they follow the classic model of tumor progression. Eighty-five percent of PNETs are nonfunctional; they are associated with a worse prognosis compared to functional PNETs, likely secondary to diagnosis at later stages. The five-year survival rate for metastatic nonfunctional PNETs is only 30–40 %. This poor prognosis for patients with metastatic or regional disease underscores the urgent need for more effective therapies. Although most PNETs are sporadic, some are associated with cancer predisposition syndromes including Multiple Endocrine Neoplasia type 1 (MEN1), von Hippel–Lindau disease (vHL), and more rarely with Neurofibromatosis type 1 (NF1) and Tuberous Sclerosis Complex (TSC). Somatic mutations in PNETs are commonly seen in MEN1 (44 %) and a study using massively parallel sequencing also identified common somatic mutations in a chromatin remodeling complex involving two genes, ATRX and DAXX (18 % and 25 %, respectively), and in the mTOR pathway in two genes, TSC2 (8.8 %) and PTEN (7.3 %). Although a complete understanding of the tumor biology and somatic genetics is lacking, the identification of these new somatic mutations may serve as potential prognostic markers or even targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40(1):1–18, vii. Epub 2011/02/26.

    PubMed  Google Scholar 

  2. Kimura W, Kuroda A, Morioka Y. Clinical pathology of endocrine tumors of the pancreas. Analysis of autopsy cases. Dig Dis Sci. 1991;36(7):933–42. Epub 1991/07/01.

    PubMed  CAS  Google Scholar 

  3. Franko J, Feng W, Yip L, Genovese E, Moser AJ. Non-functional neuroendocrine carcinoma of the pancreas: incidence, tumor biology, and outcomes in 2,158 patients. J Gastrointest Surg. 2010;14(3):541–8. Epub 2009/12/10.

    PubMed  Google Scholar 

  4. Bilimoria KY, Tomlinson JS, Merkow RP, Stewart AK, Ko CY, Talamonti MS, et al. Clinicopathologic features and treatment trends of pancreatic neuroendocrine tumors: analysis of 9,821 patients. J Gastrointest Surg. 2007;11(11):1460–7. discussion 7–9. Epub 2007/09/12.

    PubMed  Google Scholar 

  5. Frilling A, Sotiropoulos GC, Li J, Kornasiewicz O, Plockinger U. Multimodal management of neuroendocrine liver metastases. HPB (Oxford). 2010;12(6):361–79. Epub 2010/07/29.

    Google Scholar 

  6. Khasraw M, Gill A, Harrington T, Pavlakis N, Modlin I. Management of advanced neuroendocrine tumors with hepatic metastasis. J Clin Gastroenterol. 2009;43(9):838–47. Epub 2009/08/06.

    PubMed  CAS  Google Scholar 

  7. Meeker A, Heaphy C. Gastroenteropancreatic endocrine tumors. Mol Cell Endocrinol. 2014;386(1–2):101–20. Epub 2013/08/03.

    PubMed  CAS  Google Scholar 

  8. Oberg K, Knigge U, Kwekkeboom D, Perren A. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 Suppl 7:vii124–30. Epub 2012/11/20.

    PubMed  Google Scholar 

  9. Kunz PL, Reidy-Lagunes D, Anthony LB, Bertino EM, Brendtro K, Chan JA, et al. Consensus guidelines for the management and treatment of neuroendocrine tumors. Pancreas. 2013;42(4):557–77. Epub 2013/04/18.

    PubMed  Google Scholar 

  10. Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012;97(9):2990–3011. Epub 2012/06/23.

    PubMed  CAS  Google Scholar 

  11. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86(12):5658–71. Epub 2001/12/12.

    PubMed  CAS  Google Scholar 

  12. Scheithauer BW, Laws Jr ER, Kovacs K, Horvath E, Randall RV, Carney JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol. 1987;4(3):205–11. Epub 1987/08/01.

    PubMed  CAS  Google Scholar 

  13. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135(5):1469–92. Epub 2008/08/16.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA. Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med. 1998;129(6):484–94. Epub 1998/09/12.

    PubMed  CAS  Google Scholar 

  15. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276(5311):404–7. Epub 1997/04/18.

    PubMed  CAS  Google Scholar 

  16. Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC, et al. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet. 1997;6(7):1169–75. Epub 1997/07/01.

    PubMed  CAS  Google Scholar 

  17. Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat. 2008;29(1):22–32. Epub 2007/09/20.

    PubMed  CAS  Google Scholar 

  18. Bassett JH, Forbes SA, Pannett AA, Lloyd SE, Christie PT, Wooding C, et al. Characterization of mutations in patients with multiple endocrine neoplasia type 1. Am J Hum Genet. 1998;62(2):232–44. Epub 1998/04/16.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203. Epub 2011/01/22.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Moore PS, Missiaglia E, Antonello D, Zamo A, Zamboni G, Corleto V, et al. Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer. 2001;32(2):177–81. Epub 2001/09/11.

    PubMed  CAS  Google Scholar 

  21. Corbo V, Dalai I, Scardoni M, Barbi S, Beghelli S, Bersani S, et al. MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr Relat Cancer. 2010;17(3):771–83. Epub 2010/06/23.

    PubMed  CAS  Google Scholar 

  22. Goebel SU, Heppner C, Burns AL, Marx SJ, Spiegel AM, Zhuang Z, et al. Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J Clin Endocrinol Metab. 2000;85(1):116–23. Epub 2000/01/14.

    PubMed  CAS  Google Scholar 

  23. Gortz B, Roth J, Krahenmann A, de Krijger RR, Muletta-Feurer S, Rutimann K, et al. Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol. 1999;154(2):429–36. Epub 1999/02/23.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Guru SC, Goldsmith PK, Burns AL, Marx SJ, Spiegel AM, Collins FS, et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci U S A. 1998;95(4):1630–4. Epub 1998/03/21.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell. 2003;113(7):881–9. Epub 2003/07/03.

    PubMed  CAS  Google Scholar 

  26. Wang Y, Ozawa A, Zaman S, Prasad NB, Chandrasekharappa SC, Agarwal SK, et al. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Cancer Res. 2011;71(2):371–82. Epub 2010/12/04.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Heppner C, Bilimoria KY, Agarwal SK, Kester M, Whitty LJ, Guru SC, et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene. 2001;20(36):4917–25. Epub 2001/08/30.

    PubMed  CAS  Google Scholar 

  28. Sowa H, Kaji H, Hendy GN, Canaff L, Komori T, Sugimoto T, et al. Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem. 2004;279(39):40267–75. Epub 2004/05/20.

    PubMed  CAS  Google Scholar 

  29. Sowa H, Kaji H, Canaff L, Hendy GN, Tsukamoto T, Yamaguchi T, et al. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage. J Biol Chem. 2003;278(23):21058–69. Epub 2003/03/22.

    PubMed  CAS  Google Scholar 

  30. Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci U S A. 2001;98(7):3837–42. Epub 2001/03/29.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Cao Y, Liu R, Jiang X, Lu J, Jiang J, Zhang C, et al. Nuclear-cytoplasmic shuttling of menin regulates nuclear translocation of {beta}-catenin. Mol Cell Biol. 2009;29(20):5477–87. Epub 2009/08/05.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Chen G, A J, Wang M, Farley S, Lee LY, Lee LC, et al. Menin promotes the Wnt signaling pathway in pancreatic endocrine cells. Mol Cancer Res. 2008;6(12):1894–907. Epub 2008/12/17.

    PubMed  CAS  Google Scholar 

  33. Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y, et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci U S A. 2005;102(41):14659–64. Epub 2005/10/01.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Murai MJ, Chruszcz M, Reddy G, Grembecka J, Cierpicki T. Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. J Biol Chem. 2011;286(36):31742–8. Epub 2011/07/16.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123(2):207–18. Epub 2005/10/22.

    PubMed  CAS  Google Scholar 

  36. Agarwal SK, Jothi R. Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors. PLoS One. 2012;7(5):e37952. Epub 2012/06/06.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol. 2004;24(13):5639–49. Epub 2004/06/17.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Wu T, Hua X. Menin represses tumorigenesis via repressing cell proliferation. Am J Cancer Res. 2011;1(6):726–39. Epub 2011/10/22.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Kim H, Lee JE, Cho EJ, Liu JO, Youn HD. Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res. 2003;63(19):6135–9. Epub 2003/10/16.

    PubMed  CAS  Google Scholar 

  40. Kim H, Lee JE, Kim BY, Cho EJ, Kim ST, Youn HD. Menin represses JunD transcriptional activity in protein kinase C theta-mediated Nur77 expression. Exp Mol Med. 2005;37(5):466–75. Epub 2005/11/03.

    PubMed  CAS  Google Scholar 

  41. Yang YJ, Song TY, Park J, Lee J, Lim J, Jang H, et al. Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis. 2013;4:e583. Epub 2013/04/13.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Schnepp RW, Chen YX, Wang H, Cash T, Silva A, Diehl JA, et al. Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res. 2006;66(11):5707–15. Epub 2006/06/03.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Zhang H, Li W, Wang Q, Wang X, Li F, Zhang C, et al. Glucose-mediated repression of menin promotes pancreatic beta-cell proliferation. Endocrinology. 2012;153(2):602–11. Epub 2011/12/15.

    PubMed  CAS  Google Scholar 

  44. Bertolino P, Radovanovic I, Casse H, Aguzzi A, Wang ZQ, Zhang CX. Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. Mech Dev. 2003;120(5):549–60. Epub 2003/06/05.

    PubMed  CAS  Google Scholar 

  45. Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci U S A. 2001;98(3):1118–23. Epub 2001/02/07.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C, et al. Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol Cell Biol. 2003;23(17):6075–85. Epub 2003/08/15.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ. Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res. 2003;63(16):4836–41. Epub 2003/08/28.

    PubMed  CAS  Google Scholar 

  48. Gurung B, Feng Z, Iwamoto DV, Thiel A, Jin G, Fan CM, et al. Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res. 2013;73(8):2650–8. Epub 2013/04/13.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R, et al. Von Hippel-Lindau disease: a genetic study. J Med Genet. 1991;28(7):443–7. Epub 1991/07/01.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Blansfield JA, Choyke L, Morita SY, Choyke PL, Pingpank JF, Alexander HR, et al. Clinical, genetic and radiographic analysis of 108 patients with von Hippel-Lindau disease (VHL) manifested by pancreatic neuroendocrine neoplasms (PNETs). Surgery. 2007;142(6):814–8; discussion 8 e1–2. Epub 2007/12/08.

    PubMed  Google Scholar 

  51. Charlesworth M, Verbeke CS, Falk GA, Walsh M, Smith AM, Morris-Stiff G. Pancreatic lesions in von Hippel-Lindau disease? A systematic review and meta-synthesis of the literature. J Gastrointest Surg. 2012;16(7):1422–8. Epub 2012/03/01.

    PubMed  Google Scholar 

  52. Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM, et al. Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d’Etude de la Maladie de von Hippel-Lindau. Gastroenterology. 2000;119(4):1087–95. Epub 2000/10/21.

    PubMed  CAS  Google Scholar 

  53. Speisky D, Duces A, Bieche I, Rebours V, Hammel P, Sauvanet A, et al. Molecular profiling of pancreatic neuroendocrine tumors in sporadic and Von Hippel-Lindau patients. Clin Cancer Res. 2012;18(10):2838–49. Epub 2012/03/31.

    PubMed  CAS  Google Scholar 

  54. Nordstrom-O’Brien M, van der Luijt RB, van Rooijen E, van den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, et al. Genetic analysis of von Hippel-Lindau disease. Hum Mutat. 2010;31(5):521–37. Epub 2010/02/13.

    PubMed  Google Scholar 

  55. Rechsteiner MP, von Teichman A, Nowicka A, Sulser T, Schraml P, Moch H. VHL gene mutations and their effects on hypoxia inducible factor HIFalpha: identification of potential driver and passenger mutations. Cancer Res. 2011;71(16):5500–11. Epub 2011/07/01.

    PubMed  CAS  Google Scholar 

  56. Forman JR, Worth CL, Bickerton GR, Eisen TG, Blundell TL. Structural bioinformatics mutation analysis reveals genotype-phenotype correlations in von Hippel-Lindau disease and suggests molecular mechanisms of tumorigenesis. Proteins. 2009;77(1):84–96. Epub 2009/05/02.

    PubMed  CAS  Google Scholar 

  57. Schmitt AM, Schmid S, Rudolph T, Anlauf M, Prinz C, Kloppel G, et al. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer. 2009;16(4):1219–27. Epub 2009/08/20.

    PubMed  CAS  Google Scholar 

  58. Kaelin Jr WG. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002;2(9):673–82. Epub 2002/09/05.

    PubMed  CAS  Google Scholar 

  59. Min JH, Yang H, Ivan M, Gertler F, Kaelin Jr WG, Pavletich NP. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science. 2002;296(5574):1886–9. Epub 2002/05/11.

    PubMed  CAS  Google Scholar 

  60. Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002;16(10):1151–62. Epub 2002/08/03.

    PubMed  CAS  Google Scholar 

  61. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74. Epub 2003/12/04.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol. 2006;26(9):3514–26. Epub 2006/04/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell. 1998;1(7):959–68. Epub 1998/07/04.

    PubMed  CAS  Google Scholar 

  64. Kurban G, Duplan E, Ramlal N, Hudon V, Sado Y, Ninomiya Y, et al. Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene. 2008;27(7):1004–12. Epub 2007/08/19.

    PubMed  CAS  Google Scholar 

  65. Esteban-Barragan MA, Avila P, Alvarez-Tejado M, Gutierrez MD, Garcia-Pardo A, Sanchez-Madrid F, et al. Role of the von Hippel-Lindau tumor suppressor gene in the formation of beta1-integrin fibrillar adhesions. Cancer Res. 2002;62(10):2929–36. Epub 2002/05/23.

    PubMed  CAS  Google Scholar 

  66. Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell. 2006;22(3):395–405. Epub 2006/05/09.

    PubMed  CAS  Google Scholar 

  67. Roe JS, Kim HR, Hwang IY, Ha NC, Kim ST, Cho EJ, et al. Phosphorylation of von Hippel–Lindau protein by checkpoint kinase 2 regulates p53 transactivation. Cell Cycle. 2011;10(22):3920–8. Epub 2011/11/11.

    PubMed  CAS  Google Scholar 

  68. Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X, et al. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell. 2007;28(1):15–27. Epub 2007/10/16.

    PubMed  PubMed Central  Google Scholar 

  69. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol. 1988;45(5):575–8. Epub 1988/05/01.

    Google Scholar 

  70. Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44(2):81–8. Epub 2006/11/16.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Garbrecht N, Anlauf M, Schmitt A, Henopp T, Sipos B, Raffel A, et al. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr Relat Cancer. 2008;15(1):229–41. Epub 2008/03/04.

    PubMed  Google Scholar 

  72. Patil S, Chamberlain RS. Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist. 2012;17(1):101–16. Epub 2012/01/14.

    PubMed  PubMed Central  Google Scholar 

  73. Mao C, Shah A, Hanson DJ, Howard JM. Von Recklinghausen’s disease associated with duodenal somatostatinoma: contrast of duodenal versus pancreatic somatostatinomas. J Surg Oncol. 1995;59(1):67–73. Epub 1995/05/01.

    PubMed  CAS  Google Scholar 

  74. Usui M, Matsuda S, Suzuki H, Hirata K, Ogura Y, Shiraishi T. Somatostatinoma of the papilla of Vater with multiple gastrointestinal stromal tumors in a patient with von Recklinghausen’s disease. J Gastroenterol. 2002;37(11):947–53. Epub 2002/12/17.

    PubMed  Google Scholar 

  75. Le LQ, Parada LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene. 2007;26(32):4609–16. Epub 2007/02/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE, Lynch RC, et al. TORC1 is essential for NF1-associated malignancies. Curr Biol. 2008;18(1):56–62. Epub 2008/01/01.

    PubMed  CAS  Google Scholar 

  77. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 2005;102(24):8573–8. Epub 2005/06/07.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Northrup H, Krueger DA. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49(4):243–54. Epub 2013/09/24.

    PubMed  PubMed Central  Google Scholar 

  79. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet. 2001;68(1):64–80. Epub 2000/12/12.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet. 2005;13(6):731–41. Epub 2005/03/31.

    PubMed  CAS  Google Scholar 

  81. Au KS, Williams AT, Gambello MJ, Northrup H. Molecular genetic basis of tuberous sclerosis complex: from bench to bedside. J Child Neurol. 2004;19(9):699–709. Epub 2004/11/26.

    PubMed  Google Scholar 

  82. Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR, et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 2007;9(2):88–100. Epub 2007/02/17.

    PubMed  CAS  Google Scholar 

  83. Maheshwar MM, Cheadle JP, Jones AC, Myring J, Fryer AE, Harris PC, et al. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet. 1997;6(11):1991–6. Epub 1997/09/25.

    PubMed  CAS  Google Scholar 

  84. Arva NC, Pappas JG, Bhatla T, Raetz EA, Macari M, Ginsburg HB, et al. Well-differentiated pancreatic neuroendocrine carcinoma in tuberous sclerosis–case report and review of the literature. Am J Surg Pathol. 2012;36(1):149–53. Epub 2011/12/17.

    PubMed  Google Scholar 

  85. Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T. Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res. 2001;61(18):6656–9. Epub 2001/09/18.

    PubMed  CAS  Google Scholar 

  86. Perren A, Anlauf M, Komminoth P. Molecular profiles of gastroenteropancreatic endocrine tumors. Virchows Arch. 2007;451 Suppl 1:S39–46. Epub 2007/08/09.

    PubMed  CAS  Google Scholar 

  87. Beghelli S, Pelosi G, Zamboni G, Falconi M, Iacono C, Bordi C, et al. Pancreatic endocrine tumours: evidence for a tumour suppressor pathogenesis and for a tumour suppressor gene on chromosome 17p. J Pathol. 1998;186(1):41–50. Epub 1999/01/06.

    PubMed  CAS  Google Scholar 

  88. Jonkers YM, Claessen SM, Veltman JA, Geurts van Kessel A, Dinjens WN, Skogseid B, et al. Molecular parameters associated with insulinoma progression: chromosomal instability versus p53 and CK19 status. Cytogenet Genome Res. 2006;115(3–4):289–97. Epub 2006/11/25.

    PubMed  CAS  Google Scholar 

  89. Moore PS, Orlandini S, Zamboni G, Capelli P, Rigaud G, Falconi M, et al. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer. 2001;84(2):253–62. Epub 2001/02/13.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S, Lees JA, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol. 2000;157(4):1097–103. Epub 2000/10/06.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT. Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab. 2000;85(11):4146–56. Epub 2000/11/30.

    PubMed  CAS  Google Scholar 

  92. Yashiro T, Fulton N, Hara H, Yasuda K, Montag A, Yashiro N, et al. Comparison of mutations of ras oncogene in human pancreatic exocrine and endocrine tumors. Surgery. 1993;114(4):758–63. discussion 63–4. Epub 1993/10/01.

    PubMed  CAS  Google Scholar 

  93. Krausch M, Raffel A, Anlauf M, Schott M, Willenberg H, Lehwald N, et al. Loss of PTEN expression in neuroendocrine pancreatic tumors. Horm Metab Res. 2011;43(12):865–71. Epub 2011/11/23.

    PubMed  CAS  Google Scholar 

  94. Muscarella P, Melvin WS, Fisher WE, Foor J, Ellison EC, Herman JG, et al. Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res. 1998;58(2):237–40. Epub 1998/01/27.

    PubMed  CAS  Google Scholar 

  95. Komminoth P, Roth J, Muletta-Feurer S, Saremaslani P, Seelentag WK, Heitz PU. RET proto-oncogene point mutations in sporadic neuroendocrine tumors. J Clin Endocrinol Metab. 1996;81(6):2041–6. Epub 1996/06/01.

    PubMed  CAS  Google Scholar 

  96. Perren A, Schmid S, Locher T, Saremaslani P, Bonvin C, Heitz PU, et al. BRAF and endocrine tumors: mutations are frequent in papillary thyroid carcinomas, rare in endocrine tumors of the gastrointestinal tract and not detected in other endocrine tumors. Endocr Relat Cancer. 2004;11(4):855–60. Epub 2004/12/23.

    PubMed  CAS  Google Scholar 

  97. Shattuck TM, Costa J, Bernstein M, Jensen RT, Chung DC, Arnold A. Mutational analysis of Smad3, a candidate tumor suppressor implicated in TGF-beta and menin pathways, in parathyroid adenomas and enteropancreatic endocrine tumors. J Clin Endocrinol Metab. 2002;87(8):3911–4. Epub 2002/08/06.

    PubMed  CAS  Google Scholar 

  98. Tannapfel A, Vomschloss S, Karhoff D, Markwarth A, Hengge UR, Wittekind C, et al. BRAF gene mutations are rare events in gastroenteropancreatic neuroendocrine tumors. Am J Clin Pathol. 2005;123(2):256–60. Epub 2005/04/22.

    PubMed  CAS  Google Scholar 

  99. Bartsch D, Hahn SA, Danichevski KD, Ramaswamy A, Bastian D, Galehdari H, et al. Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene. 1999;18(14):2367–71. Epub 1999/05/18.

    PubMed  CAS  Google Scholar 

  100. Perren A, Saremaslani P, Schmid S, Bonvin C, Locher T, Roth J, et al. DPC4/Smad4: no mutations, rare allelic imbalances, and retained protein expression in pancreatic endocrine tumors. Diagn Mol Pathol. 2003;12(4):181–6. Epub 2003/11/26.

    PubMed  CAS  Google Scholar 

  101. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8. Epub 2013/06/19.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23. Epub 2011/02/11.

    PubMed  CAS  Google Scholar 

  103. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–84. Epub 2012/01/19.

    PubMed  PubMed Central  Google Scholar 

  104. Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, et al. Loss of DAXX and ATRX are Associated with Chromosome Instability and Reduced Survival of Patients with Pancreatic Neuroendocrine Tumors. Gastroenterology. 2014;146(2):453–60. Epub 2013/10/24.

    PubMed  CAS  Google Scholar 

  105. Gibbons RJ, Picketts DJ, Higgs DR. Syndromal mental retardation due to mutations in a regulator of gene expression. Hum Mol Genet. 1995;4:1705–9. Epub 1995/01/01.

    PubMed  CAS  Google Scholar 

  106. De La Fuente R, Baumann C, Viveiros MM. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction. 2011;142(2):221–34. Epub 2011/06/10.

    Google Scholar 

  107. Law MJ, Lower KM, Voon HP, Hughes JR, Garrick D, Viprakasit V, et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell. 2010;143(3):367–78. Epub 2010/10/30.

    PubMed  CAS  Google Scholar 

  108. Watson LA, Solomon LA, Li JR, Jiang Y, Edwards M, Shin-ya K, et al. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J Clin Invest. 2013;123(5):2049–63. Epub 2013/04/09.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Gibbons RJ, Wada T, Fisher CA, Malik N, Mitson MJ, Steensma DP, et al. Mutations in the chromatin-associated protein ATRX. Hum Mutat. 2008;29(6):796–802. Epub 2008/04/15.

    PubMed  CAS  Google Scholar 

  110. Garrick D, Sharpe JA, Arkell R, Dobbie L, Smith AJ, Wood WG, et al. Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet. 2006;2(4):e58. Epub 2006/04/22.

    PubMed  PubMed Central  Google Scholar 

  111. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27. Epub 2012/07/10.

    PubMed  CAS  Google Scholar 

  112. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 2010;24(12):1253–65. Epub 2010/05/28.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A. 2010;107(32):14075–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425. Epub 2011/07/02.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol. 2012;25(7):1033–9. Epub 2012/05/12.

    PubMed  PubMed Central  Google Scholar 

  116. Heaphy CM, Subhawong AP, Hong SM, Goggins MG, Montgomery EA, Gabrielson E, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 2011;179(4):1608–15. Epub 2011/09/06.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Maitra A, Hansel DE, Argani P, Ashfaq R, Rahman A, Naji A, et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res. 2003;9(16 Pt 1):5988–95. Epub 2003/12/17.

    PubMed  CAS  Google Scholar 

  118. Hansel DE, Rahman A, House M, Ashfaq R, Berg K, Yeo CJ, et al. Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms. Clin Cancer Res. 2004;10(18 Pt 1):6152–8. Epub 2004/09/28.

    PubMed  CAS  Google Scholar 

  119. Couvelard A, Hu J, Steers G, O’Toole D, Sauvanet A, Belghiti J, et al. Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology. 2006;131(5):1597–610. Epub 2006/10/27.

    PubMed  CAS  Google Scholar 

  120. Capurso G, Lattimore S, Crnogorac-Jurcevic T, Panzuto F, Milione M, Bhakta V, et al. Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr Relat Cancer. 2006;13(2):541–58. Epub 2006/05/27.

    PubMed  CAS  Google Scholar 

  121. Bloomston M, Durkin A, Yang I, Rojiani M, Rosemurgy AS, Enkmann S, et al. Identification of molecular markers specific for pancreatic neuroendocrine tumors by genetic profiling of core biopsies. Ann Surg Oncol. 2004;11(4):413–9. Epub 2004/04/09.

    PubMed  Google Scholar 

  122. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, Dellaperuta M, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28(2):245–55. Epub 2009/11/18.

    PubMed  CAS  Google Scholar 

  123. Nasir A, Helm J, Turner L, Chen DT, Strosberg J, Hafez N, et al. RUNX1T1: a novel predictor of liver metastasis in primary pancreatic endocrine neoplasms. Pancreas. 2011;40(4):627–33. Epub 2011/04/19.

    PubMed  CAS  Google Scholar 

  124. Speel EJ, Scheidweiler AF, Zhao J, Matter C, Saremaslani P, Roth J, et al. Genetic evidence for early divergence of small functioning and nonfunctioning endocrine pancreatic tumors: gain of 9Q34 is an early event in insulinomas. Cancer Res. 2001;61(13):5186–92. Epub 2001/06/30.

    PubMed  CAS  Google Scholar 

  125. Zhao J, Moch H, Scheidweiler AF, Baer A, Schaffer AA, Speel EJ, et al. Genomic imbalances in the progression of endocrine pancreatic tumors. Genes Chromosomes Cancer. 2001;32(4):364–72. Epub 2001/12/18.

    PubMed  CAS  Google Scholar 

  126. Stumpf E, Aalto Y, Hoog A, Kjellman M, Otonkoski T, Knuutila S, et al. Chromosomal alterations in human pancreatic endocrine tumors. Genes Chromosomes Cancer. 2000;29(1):83–7. Epub 2000/08/05.

    PubMed  CAS  Google Scholar 

  127. Speel EJ, Richter J, Moch H, Egenter C, Saremaslani P, Rutimann K, et al. Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am J Pathol. 1999;155(6):1787–94. Epub 1999/12/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimm O, Dralle H, et al. Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene. 2003;22(24):3806–12. Epub 2003/06/13.

    PubMed  CAS  Google Scholar 

  129. House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Lillemoe KD, et al. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg. 2003;238(3):423–31. discussion 31-2. Epub 2003/09/23.

    PubMed  PubMed Central  Google Scholar 

  130. Malpeli G, Amato E, Dandrea M, Fumagalli C, Debattisti V, Boninsegna L, et al. Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer. 2011;11:351. Epub 2011/08/16.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Pizzi S, Azzoni C, Bottarelli L, Campanini N, D’Adda T, Pasquali C, et al. RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol. 2005;206(4):409–16.

    PubMed  CAS  Google Scholar 

  132. Bartsch DK, Kersting M, Wild A, Ramaswamy A, Gerdes B, Schuermann M, et al. Low frequency of p16(INK4a) alterations in insulinomas. Digestion. 2000;62(2–3):171–7. Epub 2000/10/12.

    PubMed  CAS  Google Scholar 

  133. Chan AO, Kim SG, Bedeir A, Issa JP, Hamilton SR, Rashid A. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene. 2003;22(6):924–34. Epub 2003/02/14.

    PubMed  CAS  Google Scholar 

  134. Wild A, Ramaswamy A, Langer P, Celik I, Fendrich V, Chaloupka B, et al. Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors. J Clin Endocrinol Metab. 2003;88(3):1367–73. Epub 2003/03/12.

    PubMed  CAS  Google Scholar 

  135. Arnold CN, Sosnowski A, Schmitt-Graff A, Arnold R, Blum HE. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int J Cancer. 2007;120(10):2157–64. Epub 2007/02/06.

    PubMed  CAS  Google Scholar 

  136. Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 2013;123(6):2502–8. Epub 2013/05/17.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer. 2005;104(11):2292–309. Epub 2005/11/01.

    PubMed  CAS  Google Scholar 

  138. Kulke MH, Freed E, Chiang DY, Philips J, Zahrieh D, Glickman JN, et al. High-resolution analysis of genetic alterations in small bowel carcinoid tumors reveals areas of recurrent amplification and loss. Genes Chromosomes Cancer. 2008;47(7):591–603. Epub 2008/04/03.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Fishbein M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishbein, L., Nathanson, K.L. (2015). Inherited and Somatic Genetics of Pancreatic Neuroendocrine Tumors. In: Pisegna, J. (eds) Management of Pancreatic Neuroendocrine Tumors. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1798-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1798-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1797-6

  • Online ISBN: 978-1-4939-1798-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics