Skip to main content

Nervous System

  • Chapter
  • First Online:
Well-Differentiated Malignancies

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 801 Accesses

Abstract

Schwann cells play a very important role in the many aspects of the peripheral nervous system. Schwann cells have well-developed cellular processes which allow to wrap around axons and form tight junctions with each other [1–3]. Each axon is sheathed by one layer of Schwann cells which connect to each other at the node of Ranvier. This wrapping property might underlie the wavy appearance of nuclei seen in nerve sheath tumors. If one visions the Schwann cell arrangement in a nerve fascicle, the resemblance to the Verocay body characteristic of schwannomas becomes evident. Apparently, the neoplastic cells are polarized and supported by basal laminin on both sides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross MH, Pawlina W. Chapter 12. Nerve system. In: Histology: a text and atlas with correlated cell and molecular biology. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 318–63.

    Google Scholar 

  2. Pummi KP et al. Tight junction proteins and perineurial cells in neurofibromas. J Histochem Cytochem. 2006;54(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  3. Flaiz C et al. Impaired intercellular adhesion and immature adherens junctions in merlin-deficient human primary schwannoma cells. Glia. 2008;56(5):506–15.

    Article  PubMed  CAS  Google Scholar 

  4. Doddrell RD et al. Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. Brain. 2013;136(Pt 2):549–63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flaiz C et al. Altered adhesive structures and their relation to RhoGTPase activation in merlin-deficient Schwannoma. Brain Pathol. 2009;19(1):27–38.

    Article  PubMed  Google Scholar 

  6. Miettinen M. Chapter 24. Nerve sheath tumors. In: Miettinen M, editor. Modern soft tissue pathology: tumors and non-neoplastic conditions. New York: Cambridge University Press; 2010. p. 660–723.

    Chapter  Google Scholar 

  7. Staser K, Yang FC, Clapp DW. Mast cells and the neurofibroma microenvironment. Blood. 2010;116(2):157–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Kirkpatrick CJ, Curry A. Interaction between mast cells and perineurial fibroblasts in neurofibroma. New insights into mast cell function. Pathol Res Pract. 1988;183(4):453–61.

    Article  PubMed  CAS  Google Scholar 

  9. Ushigome S et al. Perineurial cell tumor and the significance of the perineurial cells in neurofibroma. Acta Pathol Jpn. 1986;36(7):973–87.

    PubMed  CAS  Google Scholar 

  10. Hirose T et al. Immunohistochemical demonstration of EMA/Glut1-positive perineurial cells and CD34-positive fibroblastic cells in peripheral nerve sheath tumors. Mod Pathol. 2003;16(4):293–8.

    Article  PubMed  Google Scholar 

  11. Rodriguez FJ et al. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 2012;123(3):295–319.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol. 2008;86(4):342–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Kanski R, et al. A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci. 2014;71(30:433–47.

    Google Scholar 

  15. Parpura V et al. Glial cells in (patho)physiology. J Neurochem. 2012;121(1):4–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Shibuya M. Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. FEBS J. 2009;276(17):4636–43.

    Article  PubMed  CAS  Google Scholar 

  17. Sokolowski JD et al. Brain-specific angiogenesis inhibitor-1 expression in astrocytes and neurons: implications for its dual function as an apoptotic engulfment receptor. Brain Behav Immun. 2011;25(5):915–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012;181(4):1126–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Sin WC, Crespin S, Mesnil M. Opposing roles of connexin43 in glioma progression. Biochim Biophys Acta. 2012;1818(8):2058–67.

    Article  PubMed  CAS  Google Scholar 

  20. Theodoric N et al. Role of gap junction protein connexin43 in astrogliosis induced by brain injury. PLoS One. 2012;7(10):e47311.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Yu SC et al. Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells. 2012;30(2):108–20.

    Article  PubMed  CAS  Google Scholar 

  22. Perry A, Brat DJ. Chapter 5. Astrocytic and oligodendroglial tumors. In: Practical surgical neuropathology: a diagnostic approach. Philadelphia: Churchill Livingstone/Elsevier; 2010. p. 63–124.

    Google Scholar 

  23. Marko NF, Weil RJ. The molecular biology of WHO grade I astrocytomas. Neuro Oncol. 2012;14(12):1424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez FJ et al. Pathological and molecular advances in pediatric low-grade astrocytoma. Annu Rev Pathol. 2013;8:361–79.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Tascos NA, Parr J, Gonatas NK. Immunocytochemical study of the glial fibrillary acidic protein in human neoplasms of the central nervous system. Hum Pathol. 1982;13(5):454–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, X. (2015). Nervous System. In: Well-Differentiated Malignancies. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1692-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1692-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1691-7

  • Online ISBN: 978-1-4939-1692-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics