Skip to main content

Cutaneous Tissue

  • Chapter
  • First Online:
Well-Differentiated Malignancies

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 830 Accesses

Abstract

The important barrier function of the epidermis is supported by the epidermal appendages such as the hair follicles and sebaceous and sweat glands. The epidermis contains a basal layer of proliferative keratinocytes that adhere to the underlying basement membrane. In the process of differentiation, the committed basal cells detach from the basement membrane and progress through different stages and form three distinctive layers: the spinous, the granular, and the stratum corneum. The molecular mechanism underlying this complex process is still poorly understood [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sotiropoulou PA, Blanpain C. Development and homeostasis of the skin epidermis. Cold Spring Harb Perspect Biol. 2012;4(7):a008383.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Doupe DP, Jones PH. Interfollicular epidermal homeostasis: dicing with differentiation. Exp Dermatol. 2012;21(4):249–53.

    Article  PubMed  Google Scholar 

  3. Biedermann T, et al. Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Invest Dermatol. 2010;130(8):1996–2009.

    Article  PubMed  CAS  Google Scholar 

  4. Lu CP, et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell. 2012;150(1):136–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Pincelli C, Marconi A. Keratinocyte stem cells: friends and foes. J Cell Physiol. 2010;225(2):310–5.

    Article  PubMed  CAS  Google Scholar 

  6. Velazquz EF, Ming GE. Chapter 3. Histology of the skin. In: Elder DE et al., editors. Lever’s histopathology of the skin. Philadelphia: Lippincott Williams & Wilkins/a Wolters Kluwer business; 2009. p. 7–66.

    Google Scholar 

  7. Sorrell JM, Caplan AI. Fibroblasts-a diverse population at the center of it all. Int Rev Cell Mol Biol. 2009;276:161–214.

    Article  PubMed  Google Scholar 

  8. Sorrell JM, Caplan AI. Fibroblast heterogeneity: more than skin deep. J Cell Sci. 2004;117(Pt 5):667–75.

    Article  PubMed  CAS  Google Scholar 

  9. Haass NK, Herlyn M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc. 2005;10(2):153–63.

    Article  PubMed  CAS  Google Scholar 

  10. Haass NK, et al. Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res. 2005;18(3):150–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wessel C, et al. CD34(+) fibrocytes in melanocytic nevi and malignant melanomas of the skin. Virchows Arch. 2008;453(5):485–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kacar A, et al. Stromal expression of CD34, alpha-smooth muscle actin and CD26/DPPIV in squamous cell carcinoma of the skin: a comparative immunohistochemical study. Pathol Oncol Res. 2012;18(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  13. El-Khoury J, Kibbi AG, Abbas O. Mucocutaneous pseudoepitheliomatous hyperplasia: a review. Am J Dermatopathol. 2012;34(2):165–75.

    Article  PubMed  Google Scholar 

  14. Zayour M, Lazova R. Pseudoepitheliomatous hyperplasia: a review. Am J Dermatopathol. 2011;33(2):112–22. quiz 123–6.

    Article  PubMed  Google Scholar 

  15. Kacar A, et al. Stromal expression of CD34, alpha-smooth muscle actin and CD26/DPPIV in squamous cell carcinoma of the skin: a comparative immunohistochemical study. Pathol Oncol Res. 2011;18(1):25–31.

    Article  PubMed  Google Scholar 

  16. Korman NJ, Hrabovsky SL. Basal cell carcinomas display extensive abnormalities in the hemidesmosome anchoring fibril complex. Exp Dermatol. 1993;2(3):139–44.

    Article  PubMed  CAS  Google Scholar 

  17. Bahadoran P, et al. Altered expression of the hemidesmosome-anchoring filament complex proteins in basal cell carcinoma: possible role in the origin of peritumoral lacunae. Br J Dermatol. 1997;136(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  18. Kirkham N. Tumors and cysts of the epidermis. In: Elder DE et al., editors. Lever’s histopathology of the skin. Philadelphia: Lippincott Williams & Wilkins/a Wolters Kluwer business; 2009. p. 791–851.

    Google Scholar 

  19. Ulrich M, et al. Peritumoral clefting in basal cell carcinoma: correlation of in vivo reflectance confocal microscopy and routine histology. J Cutan Pathol. 2011;38(2):190–5.

    Article  PubMed  Google Scholar 

  20. Sellheyer K, Krahl D. Does the peritumoral stroma of basal cell carcinoma recapitulate the follicular connective tissue sheath? J Cutan Pathol. 2011;38(7):551–9.

    Article  PubMed  Google Scholar 

  21. Ackerman AB. Differentiation of benign from malignant neoplasms by silhouette. Am J Dermatopathol. 1989;11(4):297–300.

    Article  PubMed  CAS  Google Scholar 

  22. Ackerman AB, Böer A. Histopathologic diagnosis of adnexal epithelial neoplasms atlas and text. New York: Ardor Scribendi; 2008.

    Google Scholar 

  23. Tirumalae R, Roopa M. Benign vs. malignant skin adnexal neoplasms: how useful are silhouettes? Indian J Dermatol. 2013;58(1):30–3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoang MP. Role of immunohistochemistry in diagnosing tumors of cutaneous appendages. Am J Dermatopathol. 2011;33(8):765–71. quiz 772–4.

    Article  PubMed  Google Scholar 

  25. Obaidat NA, Alsaad KO, Ghazarian D. Skin adnexal neoplasms–part 2: an approach to tumours of cutaneous sweat glands. J Clin Pathol. 2007;60(2):145–59.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Crowson AN, Magro CM, Mihm MC. Malignant adnexal neoplasms. Mod Pathol. 2006;19 Suppl 2:S93–126.

    Article  PubMed  Google Scholar 

  27. Schatton T, Frank MH. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res. 2008;21(1):39–55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Epstein JI, Netto GJ. Biopsy interpretation of the prostate. Philadelphia: Lippincott Williams & Wilkins/a Wolters Kluwer business; 2008.

    Google Scholar 

  29. Umansky V, Sevko A. Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol. 2012;22(4):319–26.

    Article  PubMed  CAS  Google Scholar 

  30. Guo G, et al. Trp53 inactivation in the tumor microenvironment promotes tumor progression by expanding the immunosuppressive lymphoid-like stromal network. Cancer Res. 2013;73(6):1668–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Huang Y, et al. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene. 2014;33(29):3830–8.

    Google Scholar 

  32. Brandner JM, Haass NK. Melanoma’s connections to the tumour microenvironment. Pathology. 2013;45(5):443–52.

    Article  PubMed  CAS  Google Scholar 

  33. Box NF, Vukmer TO, Terzian T. Targeting p53 in melanoma. Pigment Cell Melanoma Res. 2014;27(1):8–10.

    Google Scholar 

  34. Pierard GE, Pierard-Franchimont C, Delvenne P. Malignant melanoma and its stromal nonimmune microecosystem. J Oncol. 2012;2012:584219.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mooi WJ, Krausz T. Chapter 9. Melanoma: general features. In: Pathology of melanocytic disorders. London: Hodder Arnold; 2007. p. 251–84.

    Google Scholar 

  36. Urso C, et al. Histological features used in the diagnosis of melanoma are frequently found in benign melanocytic nevi. J Clin Pathol. 2005;58(4):409–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Massi G, Leboit PE. Chapter 25. Criteria for the diagnosis of malignant melanoma. In: Histological diagnosis of nevi and melanoma. Darmstadt: Springer; 2004. p. 385–402.

    Chapter  Google Scholar 

  38. Soo JK, et al. Malignancy without immortality? Cellular immortalization as a possible late event in melanoma progression. Pigment Cell Melanoma Res. 2011;24(3):490–503.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Bansal R, Nikiforov MA. Pathways of oncogene-induced senescence in human melanocytic cells. Cell Cycle. 2010;9(14):2782–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Bandyopadhyay D, et al. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell. 2007;6(4):577–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, X. (2015). Cutaneous Tissue. In: Well-Differentiated Malignancies. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1692-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1692-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1691-7

  • Online ISBN: 978-1-4939-1692-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics