Skip to main content

Transient HELS

  • Chapter
  • First Online:
The Helmholtz Equation Least Squares Method

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 1814 Accesses

Abstract

Most vibrating structures are subject to impulsive or transient force excitations in practice. Oftentimes transient excitations are unknown and therefore the resultant acoustic field cannot be predicted. Even if the excitations are given, prediction of a transient acoustic field produced by an arbitrarily shaped source is very difficult. The scarcity in literature on predicting, not to mention reconstructing a transient acoustic field, is the testimony of how challenging this problem is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Bai, Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries. J. Acoust. Soc. Am. 92, 533–549 (1992)

    Article  Google Scholar 

  2. B.-K. Kim, J.-G. Ih, On the reconstruction of vibro-acoustic field over the surface enclosing an interior space using the boundary element method. J. Acoust. Soc. Am. 100, 3003–3016 (1996)

    Article  Google Scholar 

  3. Y.-K. Kim, Y.-H. Kim, Holographic reconstruction of active sources and surface admittance in an enclosure. J. Acoust. Soc. Am. 105, 2377–2383 (1999)

    Article  Google Scholar 

  4. A.J. Burton, G.F. Miller, Application of the integral equation method to the numerical solution of some exterior boundary value problems. Proc. R. Soc. Lond. A 323, 202–210 (1971)

    Article  MathSciNet  Google Scholar 

  5. Z. Wang, S.F. Wu, Helmholtz equation-least-squares method for reconstructing the acoustic pressure field. J. Acoust. Soc. Am. 102, 2020–2032 (1997)

    Article  Google Scholar 

  6. S.F. Wu, On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method. J. Acoust. Soc. Am. 107, 2511–2522 (2000)

    Article  Google Scholar 

  7. S.F. Wu, Methods for reconstructing acoustic quantities based on acoustic pressure measurements. J. Acoust. Soc. Am. 124, 2680–2697 (2008)

    Article  Google Scholar 

  8. E.G. Williams, Regularization methods for near-field acoustic holography. J. Acoust. Soc. Am. 110, 1976–1988 (2001)

    Article  Google Scholar 

  9. S.-C. Kang, J.-G. Ih, Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography. J. Acoust. Soc. Am. 109, 1320–1328 (2001)

    Article  Google Scholar 

  10. S.F. Wu, X. Zhao, Combined Helmholtz equation least squares (CHELS) method for reconstructing acoustic radiation. J. Acoust. Soc. Am. 112, 179–188 (2002)

    Article  Google Scholar 

  11. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, Princeton, 1986)

    Google Scholar 

  12. T.B. Hansen, Spherical expansions of time-domain acoustic fields: Application to near-field scanning. J. Acoust. Soc. Am. 98, 1204–1215 (1995)

    Article  Google Scholar 

  13. S.F. Wu, Hybrid nearfield acoustical holography. J. Acoust. Soc. Am. 115(1), 207–217 (2004)

    Article  Google Scholar 

  14. Z. Wang, Helmholtz equation-least-squares (HELS) method for inverse acoustic radiation problems, Ph.D. dissertation, Wayne State University, Detroit, Michigan, 1995

    Google Scholar 

  15. J. Hald, Use of Non-Stationary STSF for the Analysis of Transient Engine Noise Radiation (Brüel & Kjær, Nærum, 1999)

    Google Scholar 

  16. R. Bracewell, Heaviside’s unit step function, H(x), in The Fourier Transform and Its Applications, 3rd edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  17. M.C. Junger, D. Feit, Sound, Structures, and their Interactions (MIT, Cambridge, 1972)

    Google Scholar 

  18. W.R. LePage, Complex Variables and the Laplace Transform for Engineers (Dover, New York, 1961)

    MATH  Google Scholar 

  19. S.F. Wu, Transient sound radiation from impulsively accelerated bodies. J. Acoust. Soc. Am. 94, 542–553 (1993)

    Article  Google Scholar 

  20. R.R. Craig Jr., Structural Dynamics: An Introduction to Computer Methods (Wiley, New York, 1981), Chap. 6, 123–127

    Google Scholar 

  21. P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (SIAM, Philadelphia, 1998)

    Book  Google Scholar 

  22. S.F. Wu, H.-C. Lu, M.S. Bajwa, Reconstruction of transient acoustic radiation from a sphere. J. Acoust. Soc. Am. 117, 2065–2077 (2005)

    Article  Google Scholar 

  23. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  24. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  25. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  26. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  27. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  28. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  29. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  30. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  31. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  32. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  33. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

  34. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. dissertation, Wane State University, December 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, S.F. (2015). Transient HELS. In: The Helmholtz Equation Least Squares Method. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1640-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1640-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1639-9

  • Online ISBN: 978-1-4939-1640-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics