Skip to main content

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 1829 Accesses

Abstract

Sound and vibration are intimately related to each other, yet they are two very different physical phenomena. In physics, sound is defined as the disturbance that travels in a compressible medium such as air in terms of a pressure (also called the longitudinal or compressional) wave. In physiology, sound is defined as the sensation of this pressure wave perceived by the brain auditory system of a human being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Nobel Prize in Physics 1971. The Nobel Foundation (nobelprize.org)

    Google Scholar 

  2. Y.N. Denisyuk, On the reflection of optical properties of an object in a wave field of light scattered by it. Dokl. Akad. Nauk SSSR 144, 1275–1278 (1962)

    Google Scholar 

  3. E.N. Leith, J. Upatnieks, Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962)

    Article  Google Scholar 

  4. F. Thurstone, Ultrasound holography and visual reconstruction. Proc. IEEE Symp. Biomed. Eng. 1, 12 (1966)

    Google Scholar 

  5. B.P. Hildebrand, B.B. Brenden, An Introduction to Acoustical Holography (Plenum, New York, 1974)

    Book  Google Scholar 

  6. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968)

    Google Scholar 

  7. E.G. Williams, J.D. Maynard, Holographic imaging without the wavelength resolution limit”. Phys. Rev. Lett. 45, 554–557 (1980)

    Article  Google Scholar 

  8. E.G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Academic, San Diego, 1999)

    Google Scholar 

  9. E.G. Williams, H.D. Dardy, R.G. Fink, Nearfield acoustical holography using an underwater automated scanner. J. Acoust. Soc. Am. 78, 789–798 (1985)

    Article  Google Scholar 

  10. J.D. Maynard, E.G. Williams, Y. Lee, Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J. Acoust. Soc. Am. 78, 1395–1413 (1985)

    Article  Google Scholar 

  11. S. Hayek, T. Luce, Aperture effects in planar nearfield acoustical imaging. Trans. ASME J. Vib. Acoust. Stress. Reliab. Des. 110, 91–96 (1988)

    Article  Google Scholar 

  12. E.G. Williams, B.H. Houston, P.C. Herdic, Fast Fourier transform and singular value decomposition formulations for patch nearfield acoustical holography. J. Acoust. Soc. Am. 114, 1322–1333 (2003)

    Article  Google Scholar 

  13. A. Sarkissian, Method of superposition applied to patch near-field. J. Acoust. Soc. Am. 118, 671–677 (2005)

    Article  Google Scholar 

  14. M. Lee, J.S. Bolton, Patch near-field acoustical holography in cylindrical geometry. J. Acoust. Soc. Am. 118, 3721–3732 (2005)

    Article  Google Scholar 

  15. K. Saijyou, S. Yoshikawa, Reduction methods of the reconstruction error for large-scale implementation of near-field acoustical holography. J. Acoust. Soc. Am. 110, 2007–2023 (2001)

    Article  Google Scholar 

  16. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978)

    Article  Google Scholar 

  17. J.W. Tukey, An introduction to the calculations of numerical spectrum analysis, in Spectral Analysis of Time Series, ed. by B. Harris (Wiley, New York, 1967), pp. 25–46

    Google Scholar 

  18. B.K. Gardner, R.J. Bernhard, A noise source identification technique using an inverse Helmholtz integral equation method. ASME J. Vib. Acoust. Stress. Reliab. Des. 110, 84–90 (1988)

    Article  Google Scholar 

  19. T.W. Wu, A direct boundary element method for acoustic radiation and scattering from mixed regular and thin bodies. J. Acoust. Soc. Am. 97, 84–91 (1995)

    Article  Google Scholar 

  20. W.A. Veronesi, J.D. Maynard, Digital holographic reconstruction of sources with arbitrarily shaped surfaces. J. Acoust. Soc. Am. 85, 588–598 (1989)

    Article  Google Scholar 

  21. G.H. Golub, C.F. Loan, Matrix Computations (Johns Hopkins University Press, North Oxford, 1983)

    MATH  Google Scholar 

  22. W.A. Veronesi, J.D. Maynard, Digital holographic reconstruction of sources with arbitrarily shaped surfaces. J. Acoust. Soc. Am. 85, 588–598 (1989)

    Article  Google Scholar 

  23. G.V. Borgiotti, A. Sarkissian, E.G. Williams, L. Schuetz, Conformal generalized near-field acoustic holography for axisymmetric geometries. J. Acoust. Soc. Am. 88, 199–209 (1990)

    Article  Google Scholar 

  24. J.M. Varah, On the numerical solution of ill-conditioned linear systems with applications to ill-posed problems. SIAM J. Numer. Anal. 10, 257–267 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. G.-T. Kim, B.-T. Lee, 3-D sound source reconstruction and field reproduction using the Helmholtz integral equation. J. Sound Vib. 136, 245–261 (1990)

    Article  Google Scholar 

  26. M.R. Bai, Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries. J. Acoust. Soc. Am. 92, 533–549 (1992)

    Article  Google Scholar 

  27. B.-K. Kim, J.-G. Ih, On the reconstruction of vibro-acoustic field over the surface enclosing an interior space using the boundary element method. J. Acoust. Soc. Am. 100, 3003–3016 (1996)

    Article  Google Scholar 

  28. Y.-K. Kim, Y.-H. Kim, Holographic reconstruction of active sources and surface admittance in an enclosure. J. Acoust. Soc. Am. 105, 2377–2383 (1999)

    Article  Google Scholar 

  29. Z. Zhang, N. Vlahopoulos, S.T. Raveendra, T. Allen, K.Y. Zhang, A computational acoustic field reconstruction process based on an indirect boundary element formulation. J. Acoust. Soc. Am. 108, 2167–2178 (2000)

    Article  Google Scholar 

  30. S.-C. Kang, J.-G. Ih, Use of non-singular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography. J. Acoust. Soc. Am. 109, 1320–1328 (2001)

    Article  Google Scholar 

  31. A. Schuhmacher, J. Hald, K.B. Rasmussen, P.C. Hansen, Sound source reconstruction using boundary element calculations. J. Acoust. Soc. Am. 113, 114–127 (2004)

    Article  Google Scholar 

  32. K. Saijyou, H. Uchida, Data extrapolation method for boundary element method-based near-field acoustical holography. J. Acoust. Soc. Am. 115, 785–796 (2004)

    Article  Google Scholar 

  33. C. Langrenne, M. Melon, A. Garcia, Boundary element method for the acoustic characterization of a machine in bounded noisy environment. J. Acoust. Soc. Am. 121, 2750–2757 (2007)

    Article  Google Scholar 

  34. D.M. Photiadis, The relationship of singular value decomposition to wave-vector filtering in sound radiation problems. J. Acoust. Soc. Am. 88, 1152–1159 (1990)

    Article  MathSciNet  Google Scholar 

  35. H.A. Schenck, Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am. 44, 41–58 (1968)

    Article  Google Scholar 

  36. A.J. Burton, G.F. Miller, Application of the integral equation method to the numerical solution of some exterior boundary value problems. Proc. R. Soc. Lond. A 323, 202–210 (1971)

    Article  MathSciNet  Google Scholar 

  37. Z. Wang, S.F. Wu, Helmholtz equation-least-squares method for reconstructing the acoustic pressure field. J. Acoust. Soc. Am. 102, 2020–2032 (1997)

    Article  Google Scholar 

  38. S.F. Wu, On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method. J. Acoust. Soc. Am. 107, 2511–2522 (2000)

    Article  Google Scholar 

  39. S.F. Wu, Methods for reconstructing acoustic quantities based on acoustic pressure measurements. J. Acoust. Soc. Am. 124, 2680–2697 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, S.F. (2015). Introduction. In: The Helmholtz Equation Least Squares Method. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1640-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1640-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1639-9

  • Online ISBN: 978-1-4939-1640-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics