Skip to main content

Finding and Counting MSTD Sets

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 101))

Abstract

We review the basic theory of more sums than differences (MSTD) sets, specifically their existence, simple constructions of infinite families, the proof that a positive percentage of sets under the uniform binomial model are MSTD but not if the probability that each element is chosen tends to zero, and “explicit” constructions of large families of MSTD sets. We conclude with some new constructions and results of generalized MSTD sets, including among other items results on a positive percentage of sets having a given linear combination greater than another linear combination, and a proof that a positive percentage of sets are k-generational sum-dominant (meaning A, A + A, \(\ldots\), \(kA = A + \cdots + A\) are each sum-dominant).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(A + A + A - A = -(A - A - A - A)\); thus we might as well assume any linear combination has at least as many sums of A as differences of A.

  2. 2.

    Requiring 0, 2n − 1 ∈ A is quite mild; we do this so that we know the first and last elements of A.

  3. 3.

    As before, requiring 0, 2n − 1 ∈ A is quite mild and is done so that we know the first and last elements of A.

References

  1. J.M. Deshouillers, G. Effinger, H. Te Riele, D. Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis. Electron. Res. Announc. Am. Math. Soc. 3, 99–104 (1997)

    Article  MATH  Google Scholar 

  2. G.A. Freiman, V.P. Pigarev, The relation between the invariants R and T. in Number Theoretic Studies in the Markov Spectrum and in the Structural Theory of Set Addition (Russian) (Kalinin Gos. University, Moscow, 1973), pp. 172–174

    Google Scholar 

  3. P.V. Hegarty, Some explicit constructions of sets with more sums than differences. Acta Arithmetica 130(1), 61–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. P.V. Hegarty, S.J. Miller, When almost all sets are difference dominated. Random Struct. Algorithms 35(1), 118–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. P.V. Hegarty, S.J. Miller, Appendix 2 of explicit constructions of infinite families of MSTD sets (by S. J. Miller and D. Scheinerman), in Additive Number Theory: Festschrift in Honor of the Sixtieth Birthday of Melvyn B. Nathanson, ed. by D. Chudnovsky, G. Chudnovsky (Springer, New York, 2010)

    Google Scholar 

  6. G. Iyer, O. Lazarev, S.J. Miller, L. Zhang, Generalized more sums than differences sets. J. Number Theory 132(5), 1054–1073 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.H. Kim, V.H. Vu, Concentration of multivariate polynomials and its applications. Combinatorica 20, 417–434 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Marica, On a conjecture of conway. Can. Math. Bull. 12, 233–234 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Martin, K. O’Bryant, Many sets have more sums than differences, in Additive Combinatorics. CRM Proceedings and Lecture Notes, vol. 43 (American Mathematical Society, Providence, 2007), pp. 287–305

    Google Scholar 

  10. S.J. Miller, B. Orosz, D. Scheinerman, Explicit constructions of infinite families of MSTD sets. J. Number Theory 130, 1221–1233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. S.J. Miller, S. Pegado, S.L. Robinson, Explicit constructions of large families of generalized more sums than differences sets. Integers 12, #A30 (2012)

    Google Scholar 

  12. M.B. Nathanson, Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics (Springer, New York, 1996)

    Google Scholar 

  13. M.B. Nathanson, Problems in additive number theory I, in Additive Combinatorics. CRM Proceedings and Lecture Notes, vol. 43 (American Mathematical Society, Providence, 2007), pp. 263–270

    Google Scholar 

  14. M.B. Nathanson, Sets with more sums than differences. Integers Electron. J. Combin. Number Theory 7, Paper A5 (24 pp.) (2007)

    Google Scholar 

  15. I.Z. Ruzsa, On the cardinality of A + A and AA, in Combinatorics year (Keszthely, 1976). Coll. Math. Soc. J. Bolyai, vol. 18 (North-Holland-Bolyai T \(\grave{\mathrm{a}}\) rsulat, Budaset, 1978), pp. 933–938

    Google Scholar 

  16. I.Z. Ruzsa, Sets of sums and differences, in S \(\acute{\mathrm{e}}\) minaire de Th \(\acute{\mathrm{e}}\) orie des Nombres de Paris 1982–1983 (Birkh \(\ddot{\mathrm{a}}\) user, Boston, 1984), pp. 267–273

    Google Scholar 

  17. I.Z. Ruzsa, On the number of sums and differences. Acta Math. Sci. Hungar. 59, 439–447 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.F. Schilling, The longest run of heads. College Math. J. 21(3), 196–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. V.H. Vu, New bounds on nearly perfect matchings of hypergraphs: higher codegrees do help. Random Struct. Algorithms 17, 29–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. V.H. Vu, Concentration of non-Lipschitz functions and applications. Random Struct. Algorithms 20(3), 262–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Zhao, Constructing MSTD sets using bidirectional ballot sequences. J. Number Theory 130(5), 1212–1220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Zhao, Sets characterized by missing sums and differences. J. Number Theory 131, 2107–2134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Iyer, G., Lazarev, O., Miller, S.J., Zhang, L. (2014). Finding and Counting MSTD Sets. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory. Springer Proceedings in Mathematics & Statistics, vol 101. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1601-6_7

Download citation

Publish with us

Policies and ethics