Skip to main content

The Plünnecke–Ruzsa Inequality: An Overview

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 101))

  • 1342 Accesses

Abstract

In this expository article we present an overview of the Plünnecke–Ruzsa inequality: the known proofs, some of its well-known applications and possible extensions. We begin with the graph-theoretic setting in which Plünnecke and later Ruzsa worked in. The more purely combinatorial proofs of the inequality are subsequently presented. In the concluding sections we discuss the sharpness of the various results presented thus far and possible extensions of the inequality to the non-commutative setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Balister, B. Bollobás, Projections, entropy and sumsets. Combinatorica 32, 125–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14, 27–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. W.T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11, 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.T. Gowers, A new way of proving sumset estimates (2011), http://gowers.wordpress.com/2011/02/10/a-new-way-of-proving-sumset-estimates/

  5. A. Granville, An introduction to additive combinatorics, in Additive Combinatorics, ed. by A. Granville, M.B. Nathanson, J. Solymosi. CRM Proceedings and Lecture Notes (American Mathematical Society, New York, 2007), pp. 1–27

    Google Scholar 

  6. B.J. Green, T. Tao, An inverse theorem for the Gowers U 3(G) norm. Proc. Edin. Math. Soc. (2) 51(1), 75–153 (2008)

    Google Scholar 

  7. K. Gyarmati, M. Maltolcsi, I.Z. Ruzsa, Plünnecke’s inequality for different summands, in Building Bridges: Between Mathematics and Computer Science, ed. by M. Grötschel, G.O.H. Katona. Bolyai Society Mathematical Studies, vol. 19 (Springer, New York, 2008), pp. 309–320

    Google Scholar 

  8. K. Gyarmati, M. Maltolcsi, I.Z. Ruzsa, A superadditivity and submultiplicativity property for cardinalities of sumsets. Combinatorica 30(2), 163–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. H.A. Helfgott, Growth and generation in \(SL_{2}(\mathbb{Z}/p\mathbb{Z})\). Ann. Math. 167, 601–623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Madiman, A.W. Marcus, P. Tetali, Entropy and set cardinality inequalities for partition-determined functions, with applications to sumsets. Random Structures Algorithms 40, 399–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  12. G. Petridis, New proofs of Plünnecke-type estimates for product sets in groups. Combinatorica 32, 721–733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Petridis, Plünnecke’s inequality. Combin. Probab. Comput. 20, 921–938 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Petridis, Upper bounds on the cardinality of higher sumsets. Acta Arith. 158, 299–319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Plünnecke, Eine zahlentheoretische anwendung der graphtheorie. J. Reine Angew. Math. 243, 171–183 (1970)

    MathSciNet  MATH  Google Scholar 

  16. C. Reiher, Comments on ‘A new way of proving sumset estimates’ by Gowers, W.T. (2011), http://gowers.wordpress.com/2011/02/10/a-new-way-of-proving-sumset-estimates/

  17. I.Z. Ruzsa, On the cardinality of A + A and AA, in Combinatorics (Keszthely 1976), ed. by A. Hajnal, V.T. Sós. Coll. Math. Soc. J. Bolyai, vol. 18 (North Holland, Amsterdam, 1978), pp. 933–938

    Google Scholar 

  18. I.Z. Ruzsa, An application of graph theory to additive number theory. Scientia Ser. A 3, 97–109 (1989)

    MathSciNet  MATH  Google Scholar 

  19. I.Z. Ruzsa, Addendum to: an application of graph theory to additive number theory. Scientia Ser. A 4, 93–94 (1990/1991)

    Google Scholar 

  20. I.Z. Ruzsa, Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65(4), 379–388 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. I.Z. Ruzsa, Cardinality questions about sumsets, in Additive Combinatorics, ed. by A. Granville, M.B. Nathanson, J. Solymosi. CRM Proceedings and Lecture Notes (American Mathematical Society, New York, 2007), pp. 195–205

    Google Scholar 

  22. I.Z. Ruzsa, Sumsets and structure, in Combinatorial Number Theory and Additive Group Theory (Springer, New York, 2009)

    Google Scholar 

  23. I.Z. Ruzsa, Towards a noncommutative Plünnecke-type inequality, in An Irregular Mind Szemeredi is 70, ed. by I. Bárány, J. Solymosi. Bolyai Society Mathematical Studies, vol. 21 (Springer, New York, 2010), pp. 591–605

    Google Scholar 

  24. T.W. Sanders, Green’s sumset problem at density one half. Acta Arith. 146(1), 91–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Tao, Additive combinatorics. http://www.math.ucla.edu/~tao/254a.1.03w/notes1.dvi

  26. T. Tao, The tensor power trick. http://terrytao.wordpress.com/2008/08/25/tricks-wiki-article-the-tensor-product-trick/

  27. T. Tao, Product set estimates for non-commutative groups. Combinatorica 28(5), 574–594 (2008)

    Article  Google Scholar 

  28. T. Tao, V.H. Vu, Additive Combinatorics (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Seva Lev, Mel Nathanson and Tom Sanders for their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Petridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Petridis, G. (2014). The Plünnecke–Ruzsa Inequality: An Overview. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory. Springer Proceedings in Mathematics & Statistics, vol 101. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1601-6_16

Download citation

Publish with us

Policies and ethics