Skip to main content

Bone Marker and Immunohistochemistry Changes in Toxic Environments

  • Chapter
  • First Online:
Technical Aspects of Toxicological Immunohistochemistry

Abstract

Osteoblast, osteoclast and osteocyte are bone cells which are affected by toxic biological and chemical agents such as endotoxins, drugs, substance abuse, chemicals in diet and metals.

Bone cells produce certain proteins or chemicals when exposed to toxic condition. They can act as bone markers and could be detected with immunohistochemistry technique as reported by several studies on bone toxicity. As an example, via immunohistochemistry, endotoxins were found to elevate inflammatory cytokines: tumour necrosis factor, interleukin-1 and interleukin-6. In another study, exposure to steroids was found to increase 11β-HSD1, Dmp1 and MMP-9 expressions, while fluoride was shown to alter the expression of bone matrix metalloproteinases within the mineralising bone.

Therefore, bone toxicity caused by certain agents could be demonstrated with immunohistochemistry technique. This provides a mean of detection for the prevention and treatment of bone damage induced by toxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badeau M, Adlercreutz H, Kaihovaara P, Tikkanen MJ. Estrogen A-ring structure and antioxidative effect on lipoproteins. J Steroid Biochem. 2005;96:271–8.

    Article  CAS  Google Scholar 

  2. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-kB1 and NF-kB2. Nat Med. 1997;3:1285–9.

    Article  CAS  PubMed  Google Scholar 

  3. Chen CH, Kang L, Lin RW, Fu YC, Li YS, Chang JK, Chen HT, Chen CH, Lin SY, Wang GJ, Ho ML. (-)-Epigallocatechin-3-gallate improves bone microarchitecture in ovariectomized rats. Menopause. 2013;20(6):687–94.

    Article  PubMed  Google Scholar 

  4. Cruzoé-Souza M, Sasso-Cerri E, Cerri PS. Immunohistochemical detection of estrogen receptorβ in alveolar bone cells of estradiol-treated female rats: possible direct action of estrogen on osteoclast life span. J Anat. 2009;215:673–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Räkel A, Sheehy O, Rahme E, LeLorier J. Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab. 2008;34:193–205.

    Article  PubMed  Google Scholar 

  6. Silva MJ, Brodt MD, Lynch MA, et al. Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res. 2009;24:1618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horcajada-Molteni MN, Chanteranne B, Lebecque P, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res. 2001;16:958–65.

    Article  CAS  PubMed  Google Scholar 

  8. Erdal N, Gürgül S, Kavak S, Yildiz A, Emre M. Deterioration of bone quality by streptozotocin (STZ)-induced type 2 diabetes mellitus in rats. Biol Trace Elem Res. 2011;140:342–53.

    Article  CAS  PubMed  Google Scholar 

  9. Chang KM, Ryan ME, Golub LM, Ramamurthy NS, McNamara TF. Local and systemic factors in periodontal diseases increase matrix-degrading enzyme activities in rat gingiva: effect of micocycline therapy. Res Commun Mol Pathol Pharmacol. 1996;91(3):303–18.

    CAS  PubMed  Google Scholar 

  10. Choi CW, Lee HR, Lim HK. Effect of Rubus coreanus extracts on diabetic osteoporosis by simultaneous regulation of osteoblasts and osteoclasts. Menopause. 2012;19(9):1043–51.

    Article  PubMed  Google Scholar 

  11. Ross PD, Kress BC, Parson RE. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int. 2000;11:76–82.

    Article  CAS  PubMed  Google Scholar 

  12. Sismey-Durrant HJ, Atkinson SJ, Hopps RM, Heath JK. The effect of lipopolysaccharide from bacteroides gingivalis and muramyl dipeptide on osteoblast collagenase release. Calcif Tissue Int. 1989;44(5):361–3.

    Article  CAS  PubMed  Google Scholar 

  13. Ramamurthy NS, Rifkin BR, Greenwald RA, Xu JW, Liu Y, Turner G, Golub LM, Vernillo AT. Inhibition of matrix metalloproteinase-mediated periodontal bone loss in rats: a comparison of 6 chemically modified tetracyclines. J Periodontol. 2002;73(7):726–34.

    Article  CAS  PubMed  Google Scholar 

  14. Elvy Suhana MR, Ima Nirwana S, Faizah O, Fairus A, Ahmad Nazrun S, Norazlina M, Norliza M, Farihah HS. The effects of Piper sarmentosum water extract on the expression and activity of 11β-hydroxysteroid dehydrogenase type 1 in the bones with excessive glucocorticoids. Iran J Biomed Sci. 2012;37(1):39–46.

    Google Scholar 

  15. Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Hebelitz S, et al. Glucocorticoid-treated mice have localized changes in trabecular bone mineral properties and osteocyte lacunar size that are not observed in placebo treated or estrogen-deficient mice. J Bone Miner Res. 2006;21:466–76.

    Article  CAS  PubMed  Google Scholar 

  16. Milroy CM, Parai JL. The histopathology of drugs of abuse. Histopathology. 2011;59(4):579–93.

    Article  PubMed  Google Scholar 

  17. Norazlina M, Hermizi H, Faizah O, Nazrun AS, Norliza M, Ima-Nirwana S. Vitamin E reversed nicotine-induced toxic effects on bone biochemical markers in male rats. Arch Med Sci. 2010;6(4):505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grief SN. Nicotine dependence: health consequences, smoking cessation therapies, and pharmacotherapy. Prim Care. 2011;38(1):23–39.

    Article  PubMed  Google Scholar 

  19. Kallala R, Barrow J, Graham SM, Kanakaris N, Giannoudis PV. The in vitro and in vivo effects of nicotine on bone, bone cells and fracture repair. Expert Opin Drug Saf. 2013;12(2):209–33.

    Article  CAS  PubMed  Google Scholar 

  20. Gao SG, Li KH, Xu M, Jiang W, Shen H, Luo W, Xu WS, Tian J, Lei GH. Bone turnover in passive smoking female rat: relationships to change in bone mineral density. BMC Musculoskelet Disord. 2011;12:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turan V, Mizrak S, Yurekli B, Yilmaz C, Ercan G. The effect of long-term nicotine exposure on bone mineral density and oxidative stress in female Swiss Albino rats. Arch Gynecol Obstet. 2013;287(2):281–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kim DH, Liu J, Bhat S, Benedict G, Lecka-Czernik B, Peterson SJ, Ebraheim NA, Heck BE. Peroxisome proliferator-activated receptor delta agonist attenuates nicotine suppression effect on human mesenchymal stem cell-derived osteogenesis and involves increased expression of heme oxygenase-1. J Bone Miner Metab. 2013;31(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  23. Ma L, Zheng LW, Sham MH, Cheung LK. Uncoupled angiogenesis and osteogenesis in nicotine-compromised bone healing. J Bone Miner Res. 2010;25(6):1305–13.

    Article  PubMed  CAS  Google Scholar 

  24. Oncken C, Prestwood K, Kleppinger A, Wang Y, Cooney J, Raisz L. Impact of smoking cessation on bone mineral density in postmenopausal women. J Womens Health (Larchmt). 2006;15(10):1141–50.

    Article  Google Scholar 

  25. Hapidin H, Othman F, Soelaiman IN, Shuid AN, Luke DA, Mohamed N. Negative effects of nicotine on bone-resorbing cytokines and bone histomorphometric parameters in male rats. J Bone Miner Metab. 2007;25(2):93–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hapidin H, Othman F, Soelaiman IN, Shuid AN, Mohamed N. Effects of nicotine administration and nicotine cessation on bone histomorphometry and bone biomarkers in Sprague-Dawley male rats. Calcif Tissue Int. 2011;88(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  27. Galatz LM, Silva MJ, Rothermich SY, Zaegel MA, Havlioglu N, Thomopoulos S. Nicotine delays tendon-to-bone healing in a rat shoulder model. J Bone Joint Surg Am. 2006;88(9):2027–34.

    CAS  PubMed  Google Scholar 

  28. Chen Y, Guo Q, Pan X, Qin L, Zhang P. Smoking and impaired bone healing: will activation of cholinergic anti-inflammatory pathway be the bridge? Int Orthop. 2011;35(9):1267–70.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Al-Hadithy N, Sewell MD, Bhavikatti M, Gikas PD. The effect of smoking on fracture healing and on various orthopaedic procedures. Acta Orthop Belg. 2012;78(3):285–90.

    PubMed  Google Scholar 

  30. Baldini A, Von Korff M, Lin EH. A review of potential adverse effects of long-term opioid therapy: a practitioner’s guide. Prim Care Companion CNS Disord. 2012;14(3). pii: PCC.11m01326.

    Google Scholar 

  31. Smith HS, Elliott JA. Opioid-induced androgen deficiency (OPIAD). Pain Physician. 2012;15(3 Suppl):ES145–56.

    PubMed  Google Scholar 

  32. Brennan MJ. The effect of opioid therapy on endocrine function. Am J Med. 2013;126(3 Suppl 1):S12–8.

    Article  CAS  PubMed  Google Scholar 

  33. Wilczek H, Stĕpán J. Bone metabolism in individuals dependent on heroin and after methadone administration. Cas Lek Cesk. 2003;142(10):606–8.

    CAS  PubMed  Google Scholar 

  34. Grey A, Rix-Trott K, Horne A, Gamble G, Bolland M, Reid IR. Decreased bone density in men on methadone maintenance therapy. Addiction. 2011;106(2):349–54.

    Article  PubMed  Google Scholar 

  35. Vestergaard P, Hermann P, Jensen JE, Eiken P, Mosekilde L. Effects of paracetamol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos Int. 2012;23(4):1255–65.

    Article  CAS  PubMed  Google Scholar 

  36. Sikharulidze ZD, Kopaliani MG, Kilasoniia LO. Comparative evaluation of clinical symptoms and status of bone metabolism in patients with heroin and buprenorphine addiction in the period of withdrawal. Georgian Med News. 2006;(134):72–6.

    Google Scholar 

  37. Mattia C, Di Bussolo E, Coluzzi F. Non-analgesic effects of opioids: the interaction of opioids with bone and joints. Curr Pharm Des. 2012;18(37):6005–9.

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Setoguchi S, Cabral H, Jick S. Opioid use for noncancer pain and risk of fracture in adults: a nested case-control study using the general practice research database. Am J Epidemiol. 2013;178(4):559–69.

    Article  PubMed  Google Scholar 

  39. Fortin JD, Bailey GM, Vilensky JA. Does opioid use for pain management warrant routine bone mass density screening in men? Pain Physician. 2008;11(4):539–41.

    PubMed  Google Scholar 

  40. Pérez-Castrillón JL, Olmos JM, Gómez JJ, Barrallo A, Riancho JA, Perera L, Valero C, Amado JA, González-Macías J. Expression of opioid receptors in osteoblast-like MG-63 cells, and effects of different opioid agonists on alkaline phosphatase and osteocalcin secretion by these cells. Neuroendocrinology. 2000;72(3):187–94.

    Article  PubMed  Google Scholar 

  41. Boshra V. Evaluation of osteoporosis risk associated with chronic use of morphine, fentanyl and tramadol in adult female rat. Curr Drug Saf. 2011;6(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  42. Mikosch P. Alcohol and bone. Wien Med Wochenschr. 2014;164(1–2):15–24.

    Article  PubMed  Google Scholar 

  43. Turner RT. Skeletal response to alcohol. Alcohol Clin Exp Res. 2000;24:1693–701.

    Article  CAS  PubMed  Google Scholar 

  44. Maddalozzo GF, Turner RT, Edwards CH, Howe KS, Widrick JJ, Rosen CJ, Iwaniec UT. Alcohol alters whole body composition, inhibits bone formation, and increases bone marrow adiposity in rats. Osteoporos Int. 2009;20:1529–38.

    Article  CAS  PubMed  Google Scholar 

  45. Ronis MJ, Wands JR, Badger TM, de la Monte SM, Lang CH, Calissendorff J. Alcohol-induced disruption of endocrine signaling. Alcohol Clin Exp Res. 2007;31:1269–85.

    Article  CAS  PubMed  Google Scholar 

  46. Chen JR, Lazarenko OP, Haley RL, Blackburn ML, Badger TM, Ronis MJ. Ethanol impairs estrogen receptor signaling resulting in accelerated activation of senescence pathways, whereas estradiol attenuates the effects of ethanol in osteoblasts. J Bone Miner Res. 2009;24:221–30.

    Article  CAS  PubMed  Google Scholar 

  47. Marrone JA, Maddalozzo GF, Branscum AJ, Hardin K, Cialdella-Kam L, Philbrick KA, Breggia AC, Rosen CJ, Turner RT, Iwaniec UT. Moderate alcohol intake lowers biochemical markers of bone turnover in postmenopausal women. Menopause. 2012;19(9):974–9.

    PubMed  Google Scholar 

  48. Chavassieux P, Serre CM, Vergnaud P, Delmas PD, Meunier PJ. In vitro evaluation of dose-effects of ethanol on human osteoblastic cells. Bone Miner. 1993;22:95–103.

    Article  CAS  PubMed  Google Scholar 

  49. Cheung RC, Gray C, Boyde A, Jones SJ. Effects of ethanol on bone cells in vitro resulting in increased resorption. Bone. 1995;16:143–7.

    Article  CAS  PubMed  Google Scholar 

  50. Dai J, Lin D, Zhang J, Habib P, Smith P, Murtha J, Fu Z, Yao Z, Qi Y, Keller ET. Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. J Clin Invest. 2000;106:887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sampson HW, Chaffin C, Lange JL, DeFee B. Alcohol consumption by young actively growing rats: a histomorphometric study of cancellous bone. Alcohol Clin Exp Res. 1997;21:352–9.

    CAS  PubMed  Google Scholar 

  52. Nyquist F, Ljunghall S, Berglund M, Obrant K. Biochemical markers of bone metabolism after short and long time ethanol withdrawal in alcoholics. Bone. 1996;19:51–4.

    Article  CAS  PubMed  Google Scholar 

  53. Chakkalakal DA. Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Exp Res. 2005;29:2077–90.

    Article  PubMed  Google Scholar 

  54. Wezeman FH, Emanuele MA, Emanuele N, Moskal 2nd SF, Woods M, Suri M, Steiner J, LaPaglia N. Chronic alcohol consumption during male rat adolescence impairs skeletal development through effects on osteoblast gene expression, bone mineral density, and bone strength. Alcohol Clin Exp Res. 1999;23:1534–42.

    Article  CAS  PubMed  Google Scholar 

  55. Peng TC, Kusy RP, Hirsch PF, Hagman JR. Ethanol induced changes in morphology and strength of femurs of rats. Alcohol Clin Exp Res. 1988;12:1655–9.

    Article  Google Scholar 

  56. Hogan HA, Groves JA, Sampson HW. Long-term alcohol consumption in the rat affects femur cross-sectional geometry and bone tissue material properties. Alcohol Clin Exp Res. 1999;23:1825–33.

    Article  CAS  PubMed  Google Scholar 

  57. Wezeman FH, Juknelis D, Frost N, Callaci HJ. Spine bone mineral density and vertebral body height is altered by alcohol consumption in growing male and female rats. Spine. 2003;31:87–92.

    CAS  Google Scholar 

  58. Wezeman FH, Emanuele M, Moskal SF, Steiner J, Lapaglia N. Alendronate administration and skeletal response during chronic alcohol intake in the adolescent male rat. J Bone Miner Res. 2000;15:2033–41.

    Article  CAS  PubMed  Google Scholar 

  59. Kelly KN, Kelly C. Pattern and cause of fractures in patients who abuse alcohol: what should we do about it? Postgrad Med J. 2013;89(1056):578–83.

    Article  PubMed  Google Scholar 

  60. Lauing KL, Roper PM, Nauer RK, Callaci JJ. Acute alcohol exposure impairs fracture healing and deregulates β-catenin signaling in the fracture callus. Alcohol Clin Exp Res. 2012;36(12):2095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kubo JT, Stefanick ML, Robbins J, Wactawski-Wende J, Cullen MR, Freiberg M, Desai M. Preference for wine is associated with lower hip fracture incidence in post-menopausal women. BMC Womens Health. 2013;13:36.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Subar AF, Krebs-Smith SM, Cook A, Kahle LL. Dietary sources of nutrients among US adults, 1989 to 1991. J Am Diet Assoc. 1998;98:537–47.

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Conteras F, Paniagua R, Avila-Diaz M, Cabrera-Munoz L, Martinez-Muniz I, Foyo-Niembro E, Amato D. Cola beverages consumption induces bone mineralization reduction in ovariectomized rats. Arch Med Res. 2000;31:360–5.

    Article  Google Scholar 

  64. Calvo MS. Dietary considerations to prevent loss of bone and renal function. Nutrition. 2000;16(7/8):564–6.

    Article  CAS  PubMed  Google Scholar 

  65. Fitzpatrick L, Heaney RP. Got soda? J Bone Miner Res. 2003;18(9):1570–2.

    Article  CAS  PubMed  Google Scholar 

  66. Heaney RP, Rafferty K. Carbonated beverages and urinary calcium excretion. Am J Clin Nutr. 2001;74:343–7.

    CAS  PubMed  Google Scholar 

  67. Petridou E, Karpathios T, Dessypris N, Simou E, Trichopoulus D. The role of dairy products and non-alcoholic beverages in bone fractures among school age children. Scand J Soc Med. 1997;25:119.

    CAS  PubMed  Google Scholar 

  68. Kim SH, Morton D, Barrett-Connor EL. Carbonated beverage consumption and bone density among older women: the Rancho Bernado Study. Am J Public Health. 1997;87:276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anderson GH, Draper HH. Effect of dietary phosphorus on calcium metabolism in intact and parathyroidectomized adult rats. J Nutr. 1972;102:1123–32.

    CAS  PubMed  Google Scholar 

  70. Shah BG, Krishnarao GVG, Draper HH. The relationship of Ca and P Nutrition during adult life and osteoporosis in aged mice. J Nutr. 1967;92:30.

    CAS  PubMed  Google Scholar 

  71. Draper HH, Sie TL, Bergan JG. Osteoporosis in aging rats induced by high phosphorus diets. J Nutr. 1972;102:1133–42.

    CAS  PubMed  Google Scholar 

  72. Krishnarao GVG, Draper HH. Influence of dietary phosphate on bone resorption in senescent mice. J Nutr. 1972;102:1143–6.

    CAS  PubMed  Google Scholar 

  73. Amato D, Maravilla A, Montoya C, Gaja O, Revilla C, Guerra R, Paniagua R. Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Rev Invest Clin. 1998;50:185.

    CAS  PubMed  Google Scholar 

  74. Heaney RP. Effects of caffeine on bone and the calcium economy. Food Clin Toxicol. 2002;40:1263–70.

    Article  CAS  Google Scholar 

  75. Bauer DC, Browner WS, Cauley JA, Orwoll ES, Scott JC, Black DM, Tao JL, Cummings SR. Factors associated with appendicular bone mass in older women. Ann Intern Med. 1993;118:657–65.

    Article  CAS  PubMed  Google Scholar 

  76. Krahe C, Friedman R, Gross JL. Risk factors for decreased bone density in premenopausal women. Braz J Med Biol Res. 1997;30:1061–6.

    Article  CAS  PubMed  Google Scholar 

  77. Rubin LA, Hawker GA, Peltekova VD, Fielding LJ, Ridout R, Cole DE. Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J Bone Miner Res. 1999;14:633–43.

    Article  CAS  PubMed  Google Scholar 

  78. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PWF, Kiel DP. Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis study. J Bone Miner Res. 2000;15:710–20.

    Article  CAS  PubMed  Google Scholar 

  79. Picard D, Ste-Marie LG, Coutu D, Carrier L, Chartrand R, Lepage R, Fugere P, D’Amour P. Premenopausal bone mineral content relates to height, weight and calcium intake during early adulthood. Bone Miner. 1988;4:299–309.

    CAS  PubMed  Google Scholar 

  80. Packard PT, Recker RR. Caffeine does not affect the rate of gain in spine bone in young women. Osteoporos Int. 1996;6:149–52.

    Article  CAS  PubMed  Google Scholar 

  81. Maini M, Brignoli E, Felicetti G, Bozzi M. Correlation between risk factors and bone mass in pre and postmenopause. Epidemiologic study on osteoporosis. Part 1. Minerva Med. 1996;87:385–99.

    CAS  PubMed  Google Scholar 

  82. Grainge MJ, Coupland CA, Cliffe SJ, Chilvers CE, Hosking DJ. Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. Osteoporos Int. 1998;8:355–63.

    Article  CAS  PubMed  Google Scholar 

  83. Glajchen N, Ismail F, Epstein S, Jowell PS, Fallon M. The effect of chronic caffeine administration on serum markers of bone mineral metabolism and bone histomorphometry in the rat. Calcif Tissue Int. 1988;43:277–80.

    Article  CAS  PubMed  Google Scholar 

  84. Sakamoto W, Nishihira J, Fujie K, Lizuka T, Handa H, Ozaki M, Yukawa S. Effect of coffee consumption on bone metabolism. Bone. 2001;28:332–6.

    Article  CAS  PubMed  Google Scholar 

  85. Liu SH, Chen C, Yang RS, Yen YP, Yang YT, Tsai C. Caffeine enhances osteoclast differentiation from bone marrow hematopoietic cells and reduces bone mineral density in growing rats. J Orthop Res. 2011;29:954–60.

    Article  CAS  PubMed  Google Scholar 

  86. Kim BJ, Ahn SH, Bae SJ, Kim EH, Lee SH, Kim HK, Choe JW, Koh JM, Kim GS. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J Bone Miner Res. 2012;27(11):2279–90.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang LL, Jiang XF, Ai HZ, Jin ZD, Xu JX, Wang B, Xu W, Xie ZG, Zhou HB, Dong QR, Xu YJ. Relationship of iron overload to bone mass density and bone turnover in postmenopausal women with fragility fractures of the hip. Zhonghua Wai Ke Za Zhi. 2013;51(6):518–21.

    PubMed  Google Scholar 

  88. Awai M, Naraski M, Yamanoi Y, Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol. 1976;95:663–72.

    Google Scholar 

  89. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophy Res Comm. 2001;288(1):275–9.

    Article  CAS  Google Scholar 

  90. Sontakke AN, Tare RS. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta. 2002;318(1–2):145–8.

    Article  CAS  PubMed  Google Scholar 

  91. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003;88(4):1523–7.

    Article  CAS  PubMed  Google Scholar 

  92. Yukihiro S, Okada S, Takeuchi K, Inoue H. Experimental osteodystrophy of chronic renal failure induced by aluminium and ferric nitrilotriacetate in Wistar rats. Pathol Int. 1995;45:19–25.

    Article  CAS  PubMed  Google Scholar 

  93. Ebina Y, Okada S, Hamazaki S, Toda Y, Midorikawa O. Impairment of bone formation with aluminum and ferric nitrilotriacetate complexes. Calcif Tissue Int. 1991;48(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  94. Takeuchi K, Okada S, Yukihiro S, Inoue H. The inhibitory effects of aluminium and iron on bone formation, in vivo and in vitro study. Pathophysiology. 1997;4:97–104.

    Article  CAS  Google Scholar 

  95. Yee JK, Ima Nirwana S. Palm Vit E protects bone against Ferric-Nitrilotriacetate-induced impairment of calcification. Asia Pac J Pharmacol. 1998;13:35–41.

    CAS  Google Scholar 

  96. Ahmad NS, Khalid BAK, Luke DA, Ima-Nirwana S. Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin Exp Pharm Physiol. 2005;32:761–70.

    Article  CAS  Google Scholar 

  97. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W. Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology. 2004;197:93–100.

    Article  CAS  PubMed  Google Scholar 

  98. Fox SW, Haque SJ, Lovibond AC, Chambers TJ. The possible role of TGF-beta-induced suppressors of cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro. J Immunol. 2003;170:3679–87.

    Article  CAS  PubMed  Google Scholar 

  99. Massey HM, Scopes J, Horton MA, Flanagan AM. Transforming growth factor-beta1 (TGF-beta) stimulates the osteoclast-forming potential of peripheral blood hematopoietic precursors in a lymphocyte-rich microenvironment. Bone. 2001;28:577–82.

    Article  CAS  PubMed  Google Scholar 

  100. Yamamoto N, Sakai F, Kon S, Morimoto J, Kimura C, Yamazaki H, Okazaki I, Seki N, Fujii T, Ueda T. Essential role of the cryptic epitope SLAYGLR within osteopontin in a murine model of rheumatoid arthritis. J Clin Invest. 2003;112:181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bernard A. Cadmium & its adverse effects on human health. Indian J Med Res. 2008;128:557–64.

    CAS  PubMed  Google Scholar 

  102. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett. 2003;137:65–83.

    Article  CAS  PubMed  Google Scholar 

  103. Hagino N, Yoshioka Y. A study of the etiology of Itai-Itai disease. J Jpn Orthop Assoc. 1961;35:812–5.

    Google Scholar 

  104. Wang H, Zhu G, Shi Y, Wenig S, Jin T, Kong Q, Nordberg GF. Influence of environmental cadmium exposure on forearm bone density. J Bone Miner Res. 2003;18:553–60.

    Article  CAS  PubMed  Google Scholar 

  105. Kazantzis G. Cadmium, osteoporosis and calcium metabolism. Biometals. 2004;17:493–8.

    Article  CAS  PubMed  Google Scholar 

  106. Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye T. Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio. 2002;31:478–81.

    Article  PubMed  Google Scholar 

  107. Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet. 1999;353(9159):1140–4.

    Article  CAS  PubMed  Google Scholar 

  108. Brzóska MM, Majewska K, Moniuszko-Jakoniuk J. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity. Food Chem Toxicol. 2005;43(10):1507–19.

    Article  PubMed  CAS  Google Scholar 

  109. Miyahara T, Yamada H, Takeuchi M, Kozuka H, Kato T, Sudo H. Inhibitory effects of cadmium on in vitro calcification of a clonal osteogenic cell, MC3T3-E1. Toxicol Appl Pharmacol. 1988;96(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  110. Bhattacharyya MH. Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol. 2009;238(3):258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wilson AK, Cerny EA, Smith BD, Wagh A, Bhattacharyya MH. Effects of cadmium on osteoclast formation and activity in vitro. Toxicol Appl Pharmacol. 1996;140(2):451–60.

    Article  CAS  PubMed  Google Scholar 

  112. Sughis M, Penders J, Haufroid V, Nemery B, Nawrot TS. Bone resorption and environmental exposure to cadmium in children: a cross-sectional study. Environ Health. 2011;10:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shalan MG, Mostafa M, Hassouna MM, Nabi SE, Rafie A. Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology. 2005;206:1–15.

    Article  CAS  PubMed  Google Scholar 

  114. Garaza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit. 2006;12(3):57–65.

    Google Scholar 

  115. Sidhu P, Nehru B. Lead intoxication: histological and oxidative damage in rat cerebrum and cerebellum. J Trace Elem Exp Med. 2004;17(1):45–53.

    Article  CAS  Google Scholar 

  116. Elmenofi GAM. Bee honey dose-dependently ameliorates lead acetate-mediated hepatorenal toxicity in rats. Life Sci J. 2012;9(4):780–8.

    Google Scholar 

  117. Haleagrahara N, Chakravarthi S, Bangra Kulur A, Radhakrishnan A. Effects of chronic lead acetate exposure on bone marrow lipid peroxidation and antioxidant enzyme activities in rats. Afr J Pharm Pharmacol. 2011;5(7):923–9.

    CAS  Google Scholar 

  118. Kansal L, Sharma V, Sharma A, Lodi S, Sharma SH. Protective role of Coriandrum sativum (coriander) extracts against lead nitrate induced oxidative stress and tissue damage in the liver and kidney in male mice. Int J Appl Biol Pharm Technol. 2011;2(3):65–83.

    Google Scholar 

  119. Schwartz J, Angle C, Pitcher H. Relationship between childhood blood lead levels and stature. Pediatrics. 1986;77:281–8.

    CAS  PubMed  Google Scholar 

  120. Shukla R, Bornschein RL, Dietrich KN, Buncher CR, Berger OG, Hammond PB, et al. Effects of fetal and infant lead exposure on growth in stature. Pediatrics. 1989;84:604–12.

    CAS  PubMed  Google Scholar 

  121. Ronis MJ, Aronson J, Gao GG, Hogue W, Skinner RA, Badger TM, Lumpkin Jr CK. Skeletal effects of developmental lead exposure in rats. Toxicol Sci. 2001;62(2):321–9.

    Article  CAS  PubMed  Google Scholar 

  122. Escribano A, Revilla M, Hernandez ER, Seco C, Gonzalez-Riola J, Villa LF, et al. Effect of lead on bone development and bone mass: a morphometric, densitometric, and histomorphometric study in growing rats. Calcif Tissue Int. 1997;60:200–3.

    Article  CAS  PubMed  Google Scholar 

  123. Silbergeld EK, Sauk J, Somerman M, Todd A, McNeill F, Fowler B, et al. Lead in bone: storage site, exposure source, and target organ. Neurotoxicology. 1993;14:225–36.

    CAS  PubMed  Google Scholar 

  124. Gangoso L, Alvarez-Lloret P, Rodriguez-Navarro AA, Mateo R. Long-term effects of lead poisoning on bone mineralization in vultures exposed to ammunition sources. Environ Pollut. 2009;157(2):569–74.

    Article  CAS  PubMed  Google Scholar 

  125. Pounds JG, Long GJ, Rosen JF. Cellular and molecular toxicity of lead in bone. Environ Health Perspect. 1991;91:17–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zuscik MJ, Ma L, Buckley T, Puzas JE, Drissi H, Schwarz EM, O’Keefe RJ. Lead induces chondrogenesis and alters transforming growth factor-β and bone morphogenetic protein signaling in mesenchymal cell populations. Environ Health Perspect. 2007;115(9):1276–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Payal B, Kaur HP, Rai DV. New insight into the effects of lead modulation on antioxidant defense mechanism and trace element concentration in rat bone. Interdiscip Toxicol. 2009;2(1):18–23.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Long GJ, Rosen JF, Pounds JG. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells. Toxicol Appl Pharmacol. 1990;102:346–61.

    Article  CAS  PubMed  Google Scholar 

  129. Brian M. The sociology of the fluoridation controversy: a re-examination. Sociol Q. 1989;30(1):59–76.

    Article  Google Scholar 

  130. Beltrán-Aguilar ED, Barker LK, Canto MT, Dye BA, Gooch BF, Griffin SO, Hyman J, Jaramillo F, Kingman A, Nowjack-Raymer R, Selwitz RH, Wu T. Surveillance for dental caries, dental sealants, tooth retention, edentulism, and enamel fluorosis—United States, 1988-1994 and 1999-2002. Centers for Disease Control and Prevention (CDC). MMWR Surveill Summ. 2005;54(3):1–43.

    PubMed  Google Scholar 

  131. Wang W, Kong L, Zhao H, Dong R, Li J, Jia Z, et al. Thoracic ossification of ligamentum flavum caused by skeletal fluorosis. Eur Spine J. 2007;16:1119–28.

    Article  PubMed  Google Scholar 

  132. Bao W, Liu N, Gao B, Deng Q. Investigation of osteoarthritis in Fengjiabao, Asuo, Qiancheng villages to research the relationship between Fluorosis and Osteoarthritis. Chin J Endemiol. 2003;22(6):517–518

    Google Scholar 

  133. Ge XJ, et al. Investigation of osteoarthritis in middle-aged and old people living in drinking water type fluoride area in Gaomi City. Prev Med Tribune. 2006;12(1):57–58.

    Google Scholar 

  134. Waddington RJ, Langley MS. Altered expression of matrix metalloproteinases within mineralizing bone cells in vitro in the presence of fluoride. Connect Tissue Res. 2003;44(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang XL, Xi SH, Guo XY, Cheng GY, Zhang Y. Effect of fluoride on the expression of MMP-20/TIMP-2 in ameloblast of rat incisor and the antagonistic effect of melatonin against fluorosis. Shanghai Kou Qiang Yi Xue. 2011;20(1):10–5.

    CAS  PubMed  Google Scholar 

  136. Jowsey J, Riggs BL, Kelly PJ, Hoffmann DL. Effect of combined therapy with sodium fluoride, vitamin D and calcium in osteoporosis. Am J Med. 1972;53(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  137. Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science. 1983;222:330–2.

    Article  CAS  PubMed  Google Scholar 

  138. Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials. 2006;27:926–36.

    Article  CAS  PubMed  Google Scholar 

  139. Monjo M, Lamolle SF, Lyngstadaas SP, Ronold HJ, Ellingsen JE. In vivo expression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants. Biomaterials. 2008;29:3771–80.

    Article  CAS  PubMed  Google Scholar 

  140. Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET. Genetic background influences fluoride’s effects on osteoclastogenesis. Bone. 2007;41:1036–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Turner CH, Garetto LP, Dunipace AJ, Zhang W, Wilson ME, Grynpas MD, Chachra D, McClintock R, Peacock M, Stookey GK. Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits. Calcif Tissue Int. 1997;61:77–83.

    Article  CAS  PubMed  Google Scholar 

  142. Gutteridge DH, et al. A randomized trial of sodium fluoride (60 mg) +/- estrogen in postmenopausal osteoporotic vertebral fractures: increased vertebral fractures and peripheral bone loss with sodium fluoride; concurrent estrogen prevents peripheral loss, but not vertebral fractures. Osteoporos Int. 2002;13(2):158–70.

    Article  CAS  PubMed  Google Scholar 

  143. Everett ET. Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res. 2011;90:552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nazrun Shuid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shuid, A.N., Mohamed, I.N., Muhammad, N., Ramli, E.S.M., Mohamed, N. (2016). Bone Marker and Immunohistochemistry Changes in Toxic Environments. In: Aziz, S., Mehta, R. (eds) Technical Aspects of Toxicological Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1516-3_10

Download citation

Publish with us

Policies and ethics