Skip to main content

Hyperspectral Imaging of Renal Oxygenation (Near-Infrared Tissue Oximetry for Renal Ischemia)

  • Chapter
  • First Online:
Advances in Image-Guided Urologic Surgery

Abstract

It is recognized that after recovery from acute renal injury, the postischemic kidney is not fully restored to its preinjury state and some exhibit progressive deterioration in renal function. Researchers have attempted to elucidate the mechanisms by which renal ischemia and reperfusion injury lead to the development of chronic kidney disease. Histologically, kidney ischemia/reperfusion injury is characterized by tubular damage. Furthermore, when animal kidneys are microscopically examined in the postischemic recovery period, they demonstrate diminished renal microvasculature, interstitial fibrosis, tubular atrophy, and persistent inflammation. Microarray analyses have shed light on the role genes contribute to the long-term consequences of ischemic acute kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagtalunan ME, Olson JL, Tilney NL, Meyer TW. Late consequences of acute ischemic injury to a solitary kidney. J Am Soc Nephrol. 1999;10:366–73.

    CAS  PubMed  Google Scholar 

  2. Pagtalunan ME, Olson JL, Meyer TW. Contribution of angiotensin II to late renal injury after acute ischemia. J Am Soc Nephrol. 2000;11:1278–86.

    CAS  PubMed  Google Scholar 

  3. Sikorski EM, Hock T, Hill-Kapturczak N, Agarwal A. The story so far: molecular regulation of the heme oxygenase-1 gene in renal injury. Am J Physiol Renal Physiol. 2004;286:F425–41.

    Article  CAS  PubMed  Google Scholar 

  4. Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol. 2001;281:F887–99.

    CAS  PubMed  Google Scholar 

  5. Forbes JM, Hewitson TD, Becker GJ, Jones CL. Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int. 2000;57:2375–85.

    Article  CAS  PubMed  Google Scholar 

  6. Basile DP, Fredrich K, Alausa M, Vio CP, Liang M, Rieder MR, Greene AS, Cowley Jr AW. Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. Am J Physiol Renal Physiol. 2005;288:F953–63.

    Article  CAS  PubMed  Google Scholar 

  7. Novick AC. Renal hypothermia: in vivo and ex vivo. Urol Clin N Am. 1983;10:637–44.

    CAS  Google Scholar 

  8. Thompson RH, Frank I, Lohse CM, et al. The impact of ischemia time during open nephron sparing surgery on solitary kidneys: a multi-institutional study. J Urol. 2007;177:471–6.

    Article  PubMed  Google Scholar 

  9. Gill IS, Abreu SC, Desai MM, et al. Laparoscopic ice slush renal hypothermia for partial nephrectomy: the initial experience. J Urol. 2003;170:52–6.

    Article  PubMed  Google Scholar 

  10. Sadis C, Teske G, Geurt G. Nicotine protects kidney from renal ischemia/reperfusion injury though the cholinergic ant-inflammatory pathway. PLoS ONE. 2007;2(5):e469. doi:10.1371/journal.pone.0000469.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mejía-Vilet JM, Ramírez V, Cruz C, et al. Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am J Physiol Renal Physiol. 2007;293(1):F78–86. Epub 2007 Mar 20.

    Article  PubMed  Google Scholar 

  12. Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem. 2004;279(50):52282–92.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng X, Mao JM, Bush R, et al. Breast cancer detection by mapping hemoglobin concentration and oxygen saturation. Appl Opt. 2003;42(31):6412–21.

    Article  CAS  PubMed  Google Scholar 

  14. Srinivasan S, Pogue BW, Carpenter C, et al. Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography. Antioxid Redox Signal. 2007;9:1143.

    Article  CAS  PubMed  Google Scholar 

  15. Keller A. A new diagnostic algorithm for early prediction of vascular compromise in 208 microsurgical flaps using tissue oxygen saturation measurements. Ann Plast Surg. 2009;62:538.

    Article  CAS  PubMed  Google Scholar 

  16. Keller A. Noninvasive tissue oximetry for flap monitoring: an initial study. J Reconstr Microsurg. 2007;23:189.

    Article  PubMed  Google Scholar 

  17. Cheng X, Mao JM, Xu X, et al. Post-occlusive reactive hyperemia in patients with peripheral vascular disease. Clin Hemorheol Microcirc. 2004;31:11.

    PubMed  Google Scholar 

  18. Padmanabhan P, McCullough AR. Penile oxygen saturation in the flaccid and erect penis in men with and without erectile dysfunction. J Androl. 2007;28:223.

    Article  PubMed  Google Scholar 

  19. Caire AA, Alvarez X, Conley S, Lee BR, et al. Near-infrared tissue oximetry and digital image analysis: quantification of renal ischaemia in real time during partial nephrectomy. BJU Int. 2012;109(2):311–5.

    Article  PubMed  Google Scholar 

  20. Thompson RH, Lane BR, Lohse CM, et al. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur Urol. 2010;58(3):340–5.

    Article  PubMed  Google Scholar 

  21. Holzer MS, Best SL, Jackson N, et al. Assessment of renal oxygenation during partial nephrectomy using hyperspectral imaging. J Urol. 2011;186(2):400–4.

    Article  PubMed  Google Scholar 

  22. Best SL, Thapa A, Holzer MJ, Cadeddu JA. Minimal arterial in-flow protects renal oxygenation and function during porcine partial nephrectomy: confirmation by hyperspectral imaging. Urology. 2011;78(4):961–6.

    Article  PubMed  Google Scholar 

  23. Best S, Thapa A, Jackson N, Cadeddu J. Renal oxygenation measurement during partial nephrectomy using hyperspectral imaging may predict acute post-operative renal function. J Endourol. 2013;27(8):1037–40. doi:10.1089/end.2012.0683.

    Article  PubMed  Google Scholar 

  24. Tracy CR, Terrell JD, Francis RP, Wehner EF, Cadeddu JA. Characterization of renal ischemia using DLP hyperspectral imaging: a comparison of artery-only occlusion (AO) versus artery and vein occlusion (AV). J Endourol. 2010;24:321.

    Article  PubMed  Google Scholar 

  25. Olweny EO, Faddegon S, Best SL. Renal oxygenation during robot-assisted laparoscopic partial nephrectomy: characterization using laparoscopic digital light processing hyperspectral imaging. J Endourol. 2013;27(3):265–9.

    Article  PubMed  Google Scholar 

  26. Colli JL, Wang Z, Johnsen N, Grossman L, Lee BR. Clamping renal artery alone produces less ischemic damage compared to clamping renal artery and vein together in two animal models: near-infrared tissue oximetry and quantitation of 8-isoprostane levels. Int Urol Nephrol. 2013;45:421–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin R. Lee MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Colli, J.L., Lee, B.R. (2015). Hyperspectral Imaging of Renal Oxygenation (Near-Infrared Tissue Oximetry for Renal Ischemia). In: Liao, J., Su, LM. (eds) Advances in Image-Guided Urologic Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1450-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1450-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1449-4

  • Online ISBN: 978-1-4939-1450-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics