Skip to main content

The Langevin Equation

  • Chapter
  • First Online:
Stochastic Processes and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 60))

Abstract

In this chapter, we study the Langevin equation and the associated Fokker –Planck equation. In Sect. 6.1, we introduce the equation and study some of the main properties of the corresponding Fokker–Planck equation. In Sect. 6.2 we give an elementary introduction to the theories of hypoellipticity and hypocoercivity. In Sect. 6.3, we calculate the spectrum of the generator and Fokker–Planck operators for the Langevin equation in a harmonic potential. In Sect. 6.4, we study Hermite polynomial expansions of solutions to the Fokker–Planck equation. In Sect. 6.5, we study the overdamped and underdamped limits for the Langevin equation. In Sect. 6.6, we study the problem of Brownian motion in a periodic potential. Bibliographical remarks and exercises can be found in Sects. 6.7 and 6.8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hamilton’s equations of motion are \(\dot{q} = \frac{\partial H} {\partial p} = p,\,\dot{p} = -\frac{\partial H} {\partial p} = -\nabla V (q)\). The Hamiltonian vector field is b(q, p) = (p, −∇V ). The corresponding Liouville operator is given by B. See Sect. 3.4.

  2. 2.

    Let A and B denote the first-order differential operators corresponding to the vector fields A(x) and B(x), i.e., \(A =\sum _{j}A_{j}(x) \frac{\partial } {\partial q_{i}},\;B =\sum _{j}B_{j}(x) \frac{\partial } {\partial q_{j}}\). The commutator between A and B is [A, B] = ABBA.

  3. 3.

    This section was written in collaboration with M. Ottobre.

  4. 4.

    In other words, the exponentially fast convergence to equilibrium for the reversible Smoluchowski dynamics follows directly from the assumption that e V satisfies a Poincaré inequality.

  5. 5.

    One can prove that the space \(\mathcal{K}^{\perp }\) is the same irrespective of whether we consider the scalar product \(\langle \cdot,\cdot \rangle\) of \(\mathcal{H}\) or the scalar product \(\langle \cdot,\cdot \rangle _{\mathcal{H}^{1}}\) associated with the norm \(\|\cdot \|_{\mathcal{H}^{1}}\).

  6. 6.

    We assume that ∫ e V dq = 1.

  7. 7.

    Note that the invariant distribution of (6.95) is independent of \(\varepsilon\).

  8. 8.

    In order to avoid initial layers, we need to assume that the initial condition is a function of the Hamiltonian. We will not study the technical issue of initial layers.

  9. 9.

    \(\langle \ell^{2}\rangle\) will not, in general, be equal to the period of the potential, with the exception of the high-friction regime.

  10. 10.

    This is a familiar trick from the theory of homogenization for partial differential equations with periodic coefficients. For example, to study the PDE

    $$\displaystyle{-\nabla \cdot \left (A\left (x, \frac{x} {\varepsilon } \right )\nabla u^{\varepsilon }\right ) = f\,,}$$

    where the matrix-valued function A is periodic in its second argument, it is convenient to set \(z = \frac{x} {\varepsilon }\) and to treat x and z as independent variables.

References

  1. R. Balescu. Statistical dynamics. Matter out of equilibrium. Imperial College Press, London, 1997.

    Google Scholar 

  2. A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam, 1978.

    Google Scholar 

  3. N. Bleistein and R. A. Handelsman. Asymptotic expansions of integrals. Dover Publications Inc., New York, second edition, 1986.

    Google Scholar 

  4. S. Cerrai and M. Freidlin. On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom. Probab. Theory Related Fields, 135(3):363–394, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Cerrai and M. Freidlin. Smoluchowski-Kramers approximation for a general class of SPDEs. J. Evol. Equ., 6(4):657–689, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Chandrasekhar. Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15(1):1–89, Jan 1943.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. R. de Groot and P. Mazur. Non-equilibrium thermodynamics. Interscience, New York, 1962.

    Google Scholar 

  8. L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1–42, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Desvillettes and C. Villani. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math., 159(2):245–316, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.-P. Eckmann and M. Hairer. Spectral properties of hypoelliptic operators. Comm. Math. Phys., 235(2):233–253, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. C. M. Fok, B. Guo, and T. Tang. Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comp., 71(240): 1497–1528 (electronic), 2002.

    Google Scholar 

  12. M. I. Freidlin and A. D. Wentzell. Random perturbations of Hamiltonian systems. Mem. Amer. Math. Soc., 109(523):viii+82, 1994.

    Google Scholar 

  13. M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems, volume 260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, third edition, 2012. Translated from the 1979 Russian original by Joseph Szücs.

    Google Scholar 

  14. H. Grad. Asymptotic theory of the Boltzmann equation. Phys. Fluids, 6: 147–181, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Hairer and G. A. Pavliotis. From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys., 131(1):175–202, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Modern Phys., 62(2):251–341, 1990.

    Article  MathSciNet  Google Scholar 

  17. B. Helffer and F. Nier. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, volume 1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005.

    Google Scholar 

  18. F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal., 171(2):151–218, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik. Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, 1994.

    Book  Google Scholar 

  21. T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov processes, volume 345 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2012. Time symmetry and martingale approximation.

    Google Scholar 

  22. S. M. Kozlov. Effective diffusion for the Fokker-Planck equation. Mat. Zametki, 45(5):19–31, 124, 1989.

    Google Scholar 

  23. S. M. Kozlov. Geometric aspects of averaging. Uspekhi Mat. Nauk, 44(2(266)):79–120, 1989.

    Google Scholar 

  24. H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7:284–304, 1940.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Lifson and J. L. Jackson. On the self–diffusion of ions in polyelectrolytic solution. J. Chem. Phys, 36:2410, 1962.

    Article  Google Scholar 

  26. G. Metafune, D. Pallara, and E. Priola. Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures. J. Funct. Anal., 196(1):40–60, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Meyer and J. Schröter. Proper and normal solutions of the Fokker-Planck equation. Arch. Rational Mech. Anal., 76(3):193–246, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Meyer and J. Schröter. Comments on the Grad procedure for the Fokker-Planck equation. J. Statist. Phys., 32(1):53–69, 1983.

    Article  MathSciNet  Google Scholar 

  29. E. Nelson. Dynamical theories of Brownian motion. Princeton University Press, Princeton, N.J., 1967.

    MATH  Google Scholar 

  30. D. Nualart. The Malliavin calculus and related topics. Probability and Its Applications (New York). Springer-Verlag, Berlin, second edition, 2006.

    Google Scholar 

  31. M. Ottobre, G. A. Pavliotis, and K. Pravda-Starov. Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal., 262(9):4000–4039, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. A. Pavliotis and A. Vogiannou. Diffusive transport in periodic potentials: Underdamped dynamics. Fluct. Noise Lett., 8(2):L155–173, 2008.

    Article  MathSciNet  Google Scholar 

  33. G. A. Pavliotis. A multiscale approach to Brownian motors. Phys. Lett. A, 344:331–345, 2005.

    Article  MATH  Google Scholar 

  34. G. A. Pavliotis and A. M. Stuart. Multiscale methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008. Averaging and homogenization.

    Google Scholar 

  35. P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi, and A. Perez-Madrid. Diffusion in tilted periodic potentials: enhancement, universality and scaling. Phys. Rev. E, 65(3):031104, 2002.

    Google Scholar 

  36. P. Reimann, C. Van den Broeck, H. Linke, J. M. Rubi, and A. Perez-Madrid. Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Let., 87(1):010602, 2001.

    Google Scholar 

  37. P. Resibois and M. De Leener. Classical Kinetic Theory of Fluids. Wiley, New York, 1977.

    Google Scholar 

  38. H. Risken. The Fokker-Planck equation, volume 18 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  39. H. Rodenhausen. Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Statist. Phys., 55(5–6):1065–1088, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  40. L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  41. J. Schröter. The complete Chapman-Enskog procedure for the Fokker-Planck equation. Arch. Rational. Mech. Anal., 66(2):183–199, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  42. R.B. Sowers. A boundary layer theory for diffusively perturbed transport around a heteroclinic cycle. Comm. Pure Appl. Math., 58(1):30–84, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  43. R. L. Stratonovich. Topics in the theory of random noise. Vol. II. Revised English edition. Translated from the Russian by Richard A. Silverman. Gordon and Breach Science Publishers, New York, 1967.

    Google Scholar 

  44. G. Teschl. Mathematical methods in quantum mechanics, volume 99 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009. With applications to Schrödinger operators.

    Google Scholar 

  45. U. M. Titulaer. A systematic solution procedure for the Fokker-Planck equation of a Brownian particle in the high-friction case. Phys. A, 91(3–4): 321–344, 1978.

    Article  MathSciNet  Google Scholar 

  46. C. Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, 2009.

    Google Scholar 

  47. D. Wycoff and N. L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation. Phys. A, 146(1–2):175–200, 1987.

    Article  MathSciNet  Google Scholar 

  48. D. Wycoff and N. L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation with a weak magnetic field. Phys. A, 146(1–2): 201–218, 1987.

    Article  MathSciNet  Google Scholar 

  49. R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, New York, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavliotis, G.A. (2014). The Langevin Equation. In: Stochastic Processes and Applications. Texts in Applied Mathematics, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1323-7_6

Download citation

Publish with us

Policies and ethics