Skip to main content

The Fokker–Planck Equation

  • Chapter
  • First Online:
Stochastic Processes and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 60))

Abstract

In Chap. 2, we derived the backward and forward (Fokker–Planck) Kolmogorov equations. The Fokker–Planck equation enables us to calculate the transition probability density, which we can use to calculate the expectation value of observables of a diffusion process. In this chapter, we study various properties of this equation such as existence and uniqueness of solutions, long-time asymptotics, boundary conditions, and spectral properties of the Fokker–Planck operator. We also study in some detail various examples of diffusion processes and of the associated Fokker–Planck equation. We will restrict attention to time-homogeneous diffusion processes, for which the drift and diffusion coefficients do not depend on time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter we will call this equation the Fokker–Planck equation, which is more customary in the physics literature, rather than the forward Kolmogorov equation, which is more customary in the mathematics literature.

  2. 2.

    Of course, a random walk is not a diffusion process. However, as we have already seen, Brownian motion can be defined as the limit of an appropriately rescaled random walk. A similar construction exists for more general diffusion processes.

  3. 3.

    In fact, we prove only that \(\mathcal{L}\) is symmetric. An additional argument is needed to prove that it is self-adjoint. See the comments in Sect. 4.10.

  4. 4.

    The transformation of the generator of a diffusion process to a Schrödinger operator is discussed in detail in Sect. 4.9.

  5. 5.

    These eigenfunctions are the Hermite functions.

  6. 6.

    Of course, the function space \(L^{2}(\rho _{\beta })\) in which we study the eigenvalue problem for \(\mathcal{L}\) does depend on β through ρ β .

  7. 7.

    A complete proof of this result would require a more careful study of the domain of definition of the generator.

  8. 8.

    Note that we can incorporate the normalization constant in the definition of Φ. Alternatively, we can write \(\rho = \frac{1} {Z}e^{-\varPhi }\), \(Z =\int e^{-\varPhi }\,dx\). See, for example, the formula for the stationary distribution of a one-dimensional diffusion process with reflecting boundary conditions, Eq. (4.35). We can write it in the form

    $$\displaystyle{p_{s}(x) = \frac{1} {Z}e^{-\varPhi }\quad \mbox{ with}\quad \varPhi =\log (\sigma (x)) -\left (2\int _{\ell}^{x}\frac{b(y)} {\sigma (y)} \,dy\right ).}$$
  9. 9.

    The calculation of the normalization constant requires the calculation of an integral (the partition function) in a high-dimensional space, which might be computationally very expensive.

  10. 10.

    In the statistics literature, this is usually called the Langevin dynamics. We will use this term for the second-order stochastic differential equation that is obtained after adding dissipation and noise to a Hamiltonian system; see Chap. 6. Using the terminology that we will introduce there, the dynamics (4.116) correspond to the overdamped Langevin dynamics.

  11. 11.

    When implementing the MCMC algorithm, we need to discretize the stochastic differential equation and take the discretization and Monte Carlo errors into account. See Sect. 5.2.

  12. 12.

    Two operators A 1, A 2 defined in two Hilbert spaces H 1, H 2 with inner products \(\langle \cdot,\cdot \rangle _{H_{1}},\,\langle \cdot,\cdot \rangle _{H_{2}}\), respectively, are called unitarily equivalent if there exists a unitary transformation U: H 1H 2 (i.e., \(\langle Uf,Uh\rangle _{H_{2}} =\langle f,h\rangle _{H_{1}},\;\forall f,\,h \in H_{1}\)) such that

    $$\displaystyle{UA_{1}U^{-1} = A_{ 2}.}$$

    When the operators A 1, A 2 are unbounded, we need to be more careful with their domain of definition.

  13. 13.

    In fact, the Poincaré inequality for Gaussian measures can be proved using the fact that the Hermite polynomials form an orthonormal basis for \(L^{2}(\mathbb{R}^{d},\rho _{\beta })\).

References

  1. A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani, and C. Villani. Entropies and equilibria of many-particle systems: an essay on recent research. Monatsh. Math., 142 (1–2):35–43, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential Equations, 26(1–2):43–100, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Arnold. Stochastic differential equations: theory and applications. Wiley-Interscience [John Wiley & Sons], New York, 1974. Translated from the German.

    Google Scholar 

  4. D. Bakry, P. Cattiaux, and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal., 254(3):727–759, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, 2014.

    Google Scholar 

  6. E. A. Carlen. Conservative diffusions. Comm. Math. Phys., 94(3):293–315, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. I. Cukier, K. Lakatos-Lindenberg, and K. E. Shuler. Orthogonal polynomial solutions of the Fokker-Planck equation. J. Stat. Phys., 9(2):137–144, 1973.

    Article  Google Scholar 

  8. L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1–42, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Desvillettes and C. Villani. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math., 159(2):245–316, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Diaconis. The Markov chain Monte Carlo revolution. Bull. Amer. Math. Soc. (N.S.), 46(2):179–205, 2009.

    Google Scholar 

  11. L. C. Evans. Partial Differential Equations. AMS, Providence, Rhode Island, 1998.

    MATH  Google Scholar 

  12. W. Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons Inc., New York, 1971.

    Google Scholar 

  13. A. Friedman. Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  14. A. Friedman. Stochastic differential equations and applications. Vol. 1. Academic Press, New York, 1975. Probability and Mathematical Statistics, Vol. 28.

    Google Scholar 

  15. A. Friedman. Stochastic differential equations and applications. Vol. 2. Academic Press, New York, 1976. Probability and Mathematical Statistics, Vol. 28.

    Google Scholar 

  16. C. W. Gardiner. Handbook of stochastic methods. Springer-Verlag, Berlin, second edition, 1985. For physics, chemistry and the natural sciences.

    Google Scholar 

  17. L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4): 1061–1083, 1975.

    Article  MathSciNet  Google Scholar 

  18. R. Z. Has’minskiĭ. Stochastic stability of differential equations, volume 7 of Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis. Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.

    Google Scholar 

  19. U. G. Haussmann and É. Pardoux. Time reversal of diffusions. Ann. Probab., 14(4):1188–1205, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. A. Holley, S. Kusuoka, and D. W. Stroock. Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal., 83(2):333–347, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Horsthemke and R. Lefever. Noise-induced transitions, volume 15 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984. Theory and applications in physics, chemistry, and biology.

    Google Scholar 

  22. C.-R. Hwang, S.-Y. Hwang-Ma, and S.-J. Sheu. Accelerating Gaussian diffusions. Ann. Appl. Probab., 3(3):897–913, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  23. C.-R. Hwang, S.-Y. Hwang-Ma, and S.-J. Sheu. Accelerating diffusions. Ann. Appl. Probab., 15(2):1433–1444, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  24. D.-Q. Jiang, M. Qian, and M.-P. Qian. Mathematical theory of nonequilibrium steady states, volume 1833 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.

    Google Scholar 

  25. F. John. Partial differential equations, volume 1 of Applied Mathematical Sciences. Springer-Verlag, New York, fourth edition, 1991.

    Google Scholar 

  26. S. Karlin and H. M. Taylor. A second course in stochastic processes. Academic Press Inc., New York, 1981.

    MATH  Google Scholar 

  27. A. Lasota and M. C. Mackey. Chaos, fractals, and noise, volume 97 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1994.

    Google Scholar 

  28. T. Lelievre, F. Nier, and G. A. Pavliotis. Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. J. Stat. Phys., 152(2): 237–274, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Lelièvre, M. Rousset, and G. Stoltz. Free energy computations. Imperial College Press, London, 2010. A mathematical perspective.

    Google Scholar 

  30. J. S. Liu. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer, New York, 2008.

    MATH  Google Scholar 

  31. Z. M. Ma and M. Röckner. Introduction to the theory of (nonsymmetric) Dirichlet forms. Universitext. Springer-Verlag, Berlin, 1992.

    Book  Google Scholar 

  32. M. C. Mackey. Time’s arrow. Dover Publications Inc., Mineola, NY, 2003. The origins of thermodynamic behavior, Reprint of the 1992 original [Springer, New York; MR1140408].

    Google Scholar 

  33. M. C. Mackey, A. Longtin, and A. Lasota. Noise-induced global asymptotic stability. J. Statist. Phys., 60(5–6):735–751, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  34. P. Mandl. Analytical treatment of one-dimensional Markov processes. Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, 1968.

    Google Scholar 

  35. P. A. Markowich and C. Villani. On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis. Mat. Contemp., 19:1–29, 2000.

    MATH  MathSciNet  Google Scholar 

  36. S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag London Ltd., London, 1993.

    Book  MATH  Google Scholar 

  37. A. Mira and C. J. Geyer. On non-reversible Markov chains. In Monte Carlo methods (Toronto, ON, 1998), volume 26 of Fields Inst. Commun., pages 95–110. Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  38. E. Nelson. The adjoint Markoff process. Duke Math. J., 25:671–690, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  39. E. Nelson. Quantum fluctuations. Princeton Series in Physics. Princeton University Press, Princeton, NJ, 1985.

    MATH  Google Scholar 

  40. H. Qian, M. Qian, and X. Tang. Thermodynamics of the general duffusion process: time–reversibility and entropy production. J. Stat. Phys., 107(5/6):1129–1141, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York, 1978.

    Google Scholar 

  42. H. Risken. Solutions of F-Planck equation in detailed balance. Z. Physik, 251(3):231, 1972.

    Google Scholar 

  43. G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci., 16(4):351–367, 2001.

    Google Scholar 

  44. G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  45. B. Simon. Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.), 7(3): 447–526, 1982.

    Google Scholar 

  46. C. Soize. The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions, volume 17 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Inc., River Edge, NJ, 1994.

    Google Scholar 

  47. D. W. Stroock. Partial differential equations for probabilists, volume 112 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  48. D. W. Stroock. Probability theory, an analytic view. Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  49. G. Teschl. Mathematical methods in quantum mechanics, volume 99 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009. With applications to Schrödinger operators.

    Google Scholar 

  50. N. G. van Kampen. Stochastic processes in physics and chemistry. North-Holland Publishing Co., Amsterdam, 1981. Lecture Notes in Mathematics, 888.

    Google Scholar 

  51. C. Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavliotis, G.A. (2014). The Fokker–Planck Equation. In: Stochastic Processes and Applications. Texts in Applied Mathematics, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1323-7_4

Download citation

Publish with us

Policies and ethics