Skip to main content

Introduction to Stochastic Differential Equations

  • Chapter
  • First Online:
Stochastic Processes and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 60))

Abstract

In this chapter, we study diffusion processes at the level of paths. In particular, we study stochastic differential equations (SDEs) driven by Gaussian white noise, defined formally as the derivative of Brownian motion. In Sect. 3.1, we introduce SDEs. In Sect. 3.2, we introduce the Itô and Stratonovich stochastic integrals. In Sect. 3.3, we present the concept of a solution to an SDE. The generator, Itô’s formula, and the connection with the Fokker–Planck equation are covered in Sect. 3.4. Examples of SDEs are presented in Sect. 3.5. The Lamperti transformation and Girsanov’s theorem are discussed briefly in Sect. 3.6. Linear SDEs are studied in Sect. 3.7. Bibliographical remarks and exercises can be found in Sects. 3.8 and 3.9, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, it is a C 1+α function of time, with α < 1∕2.

  2. 2.

    This is the case, for example, when the SDE has smooth coefficients and the diffusion matrix Σ = σσT is strictly positive definite.

  3. 3.

    In Sect. 4.2, we will redo this calculation using the Fokker–Planck equation.

  4. 4.

    We can also consider the case that σR d×m with nm, i.e., that the SDE is driven by an m-dimensional Brownian motion.

  5. 5.

    More precisely, let \(\{\mathcal{F}_{t}\}\) be a filtration. A function τ: Ω ↦ [0, +] is a called a (strict) stopping time with respect to \(\{\mathcal{F}_{t}\}\) if

    $$\displaystyle{\big\{\omega \,;\,\tau (\omega )\leqslant t\big\} \in \mathcal{F}_{t}\quad \mbox{ for all}\;t\geqslant 0.}$$
  6. 6.

    Two probability measures P 1, P 2 are equivalent on a σ-field \(\mathcal{G}\) if and only if \(P_{1}(A) = 0\Longleftrightarrow P_{2}(A) = 0\) for all \(A \in \mathcal{G}\). In this case \(\frac{dP_{2}} {dP_{1}}\) and \(\frac{dP_{1}} {dP_{2}}\) exist.

References

  1. Y. Aït-Sahalia. Closed-form likelihood expansions for multivariate diffusions. Ann. Statist., 36(2):906–937, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Arnold. Stochastic differential equations: theory and applications. Wiley-Interscience [John Wiley & Sons], New York, 1974. Translated from the German.

    Google Scholar 

  3. L. C. Evans. An introduction to stochastic differential equations. American Mathematical Society, Providence, RI, 2013.

    MATH  Google Scholar 

  4. A. Friedman. Stochastic differential equations and applications. Vol. 1. Academic Press, New York, 1975. Probability and Mathematical Statistics, Vol. 28.

    Google Scholar 

  5. A. Friedman. Stochastic differential equations and applications. Vol. 2. Academic Press, New York, 1976. Probability and Mathematical Statistics, Vol. 28.

    Google Scholar 

  6. T. C. Gard. Introduction to stochastic differential equations, volume 114 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1988.

    Google Scholar 

  7. J. Glimm and A. Jaffe. Quantum physics. Springer-Verlag, New York, second edition, 1987. A functional integral point of view.

    Google Scholar 

  8. W. Horsthemke and R. Lefever. Noise-induced transitions, volume 15 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984. Theory and applications in physics, chemistry, and biology.

    Google Scholar 

  9. S. M. Iacus. Simulation and inference for stochastic differential equations. Springer Series in Statistics. Springer, New York, 2008.

    Book  MATH  Google Scholar 

  10. N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam, second edition, 1989.

    MATH  Google Scholar 

  11. J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2003.

    Google Scholar 

  12. I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

    Google Scholar 

  13. S. Karlin and H. M. Taylor. A second course in stochastic processes. Academic Press Inc., New York, 1981.

    MATH  Google Scholar 

  14. L. B. Koralov and Y. G. Sinai. Theory of probability and random processes. Universitext. Springer, Berlin, second edition, 2007.

    Book  MATH  Google Scholar 

  15. Y. A. Kutoyants. Statistical inference for ergodic diffusion processes. Springer Series in Statistics. Springer-Verlag London Ltd., London, 2004.

    Book  MATH  Google Scholar 

  16. R. S. Liptser and A. N. Shiryaev. Statistics of random processes. I, volume 5 of Applications of Mathematics (New York). Springer-Verlag, Berlin, expanded edition, 2001.

    Google Scholar 

  17. X. Mao. Stochastic differential equations and their applications. Horwood Publishing Series in Mathematics & Applications. Horwood Publishing Limited, Chichester, 1997.

    MATH  Google Scholar 

  18. B. Øksendal. Stochastic differential equations. Universitext. Springer-Verlag, Berlin, 2003.

    Book  Google Scholar 

  19. G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions, volume 44 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1992.

    Google Scholar 

  20. C. Prévôt and M. Röckner. A concise course on stochastic partial differential equations, volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007.

    Google Scholar 

  21. D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

    Google Scholar 

  22. H. Risken. The Fokker-Planck equation, volume 18 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  23. L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. 1. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  24. L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  25. B. Simon. Functional integration and quantum physics. AMS Chelsea Publishing, Providence, RI, second edition, 2005.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavliotis, G.A. (2014). Introduction to Stochastic Differential Equations. In: Stochastic Processes and Applications. Texts in Applied Mathematics, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1323-7_3

Download citation

Publish with us

Policies and ethics