Skip to main content

Acute Kidney Injury After Cardiovascular Surgery in Children

  • Chapter
  • First Online:
Perioperative Kidney Injury

Abstract

Acute kidney injury (AKI) is a frequent and serious complication after pediatric cardiovascular surgery, affecting up to 60 % of patients. Even minor degrees of AKI are associated with worse clinical outcomes, including prolonged mechanical ventilation, longer ICU stay, and increased mortality. Although the mechanism for AKI after cardiopulmonary bypass (CPB) is not completely elucidated, it is known that infants are particularly vulnerable to AKI given the immaturity of their nephron system and the complexity of their cardiac repairs, often necessitating long durations of cardiopulmonary bypass. Current treatment strategies are focused on managing AKI-related fluid overload, which is an independent risk factor for mortality. The early use of renal replacement, often in the form of peritoneal dialysis, is becoming more frequent among this cohort in the absence of other established preventative or treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li S, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morgan CJ, et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr. 2013;162(1):120–127.e1.

    Article  PubMed  Google Scholar 

  3. Karkouti K, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119(4):495–502.

    Article  PubMed  Google Scholar 

  4. Krawczeski CD, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22): 2301–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Blinder JJ, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.

    Article  PubMed  Google Scholar 

  6. Williams DM, et al. Acute kidney failure: a pediatric experience over 20 years. Arch Pediatr Adolesc Med. 2002;156(9):893–900.

    Article  PubMed  Google Scholar 

  7. Akcan-Arikan A, et al. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.

    Article  PubMed  CAS  Google Scholar 

  8. Mehta RL, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol. 2006;17(6):1503–20.

    Article  PubMed  CAS  Google Scholar 

  10. Kainuma M, Yamada M, Miyake T. Continuous urine oxygen tension monitoring in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10(5):603–8.

    Article  PubMed  CAS  Google Scholar 

  11. Bojan M, et al. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474–81.

    Article  PubMed  CAS  Google Scholar 

  12. Sasser WC, et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2013. doi:10.1111/chd.12072. [epub ahead of print].

    PubMed  Google Scholar 

  13. Goldstein SL, et al. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107(6):1309–12.

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein SL, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  PubMed  Google Scholar 

  15. Arikan AA, et al. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13(3):253–8.

    Article  PubMed  Google Scholar 

  16. Cooper DS, et al. Novel urinary biomarkers remain elevated years after acute kidney injury following cardiac surgery in children. J Am Coll Cardiol. 2013;61(10):E438.

    Article  Google Scholar 

  17. Murray PT, et al. A framework and key research questions in AKI diagnosis and staging in different environments. Clin J Am Soc Nephrol. 2008;3(3):864–8.

    Article  PubMed  Google Scholar 

  18. Goldstein SL, Chawla LS. Renal angina. Clin J Am Soc Nephrol. 2010;5(5):943–9.

    Article  PubMed  Google Scholar 

  19. Mishra J, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  PubMed  CAS  Google Scholar 

  20. Dent CL, et al. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11(6):R127.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bennett M, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3(3):665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mishra J, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073–82.

    Article  PubMed  Google Scholar 

  23. Parikh CR, et al. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005;16(10):3046–52.

    Article  PubMed  CAS  Google Scholar 

  24. Krawczeski CD, et al. Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol. 2010;5(9):1552–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zappitelli M, et al. Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney Int. 2011;80(6):655–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Naik SK, Knight A, Elliott M. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation. 1991;84(5 Suppl):III422–31.

    PubMed  CAS  Google Scholar 

  27. Chaturvedi RR, et al. Modified ultrafiltration improves global left ventricular systolic function after open-heart surgery in infants and children. Eur J Cardiothorac Surg. 1999;15(6):742–6.

    Article  PubMed  CAS  Google Scholar 

  28. Davies MJ, et al. Modified ultrafiltration improves left ventricular systolic function in infants after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1998;115(2):361–9; discussion 369–70.

    Article  PubMed  CAS  Google Scholar 

  29. Sutherland SM, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.

    Article  PubMed  Google Scholar 

  30. Jander A, et al. Continuous veno-venous hemodiafiltration in children after cardiac surgery. Eur J Cardiothorac Surg. 2007;31(6):1022–8.

    Article  PubMed  Google Scholar 

  31. Sorof JM, et al. Early initiation of peritoneal dialysis after surgical repair of congenital heart disease. Pediatr Nephrol. 1999;13(8):641–5.

    Article  PubMed  CAS  Google Scholar 

  32. Picca S, Ricci Z, Picardo S. Acute kidney injury in an infant after cardiopulmonary bypass. Semin Nephrol. 2008;28(5):470–6.

    Article  PubMed  Google Scholar 

  33. Swan P, et al. The safety of peritoneal drainage and dialysis after cardiopulmonary bypass in children. J Thorac Cardiovasc Surg. 1997;114(4):688–9.

    Article  PubMed  CAS  Google Scholar 

  34. Picca S, et al. Risks of acute renal failure after cardiopulmonary bypass surgery in children: a retrospective 10-year case-control study. Nephrol Dial Transplant. 1995;10(5):630–6.

    PubMed  CAS  Google Scholar 

  35. Costello JM, et al. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Crit Care Med. 2006;7(1):28–33.

    Article  PubMed  Google Scholar 

  36. Ricci Z, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15(3):R160.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zangrillo A, et al. Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth. 2012;26(3):407–13.

    Article  PubMed  CAS  Google Scholar 

  38. Ejaz AA, et al. Prophylactic nesiritide does not prevent dialysis or all-cause mortality in patients undergoing high-risk cardiac surgery. J Thorac Cardiovasc Surg. 2009;138(4):959–64.

    Article  PubMed  CAS  Google Scholar 

  39. Simsic JM, et al. Hemodynamic effects and safety of nesiritide in neonates with heart failure. J Intensive Care Med. 2008;23(6):389–95.

    Article  PubMed  Google Scholar 

  40. Adabag AS, et al. Efficacy of N-acetylcysteine in preventing renal injury after heart surgery: a systematic review of randomized trials. Eur Heart J. 2009;30(15):1910–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Aiyagari R, et al. Effects of N-acetylcysteine on renal dysfunction in neonates undergoing the arterial switch operation. J Thorac Cardiovasc Surg. 2010;139(4):956–61.

    Article  PubMed  CAS  Google Scholar 

  42. Lapsia V, et al. Elevated uric acid increases the risk for acute kidney injury. Am J Med. 2012;125(3):302. e9–17.

    Article  CAS  Google Scholar 

  43. Ejaz AA, et al. Effect of uric acid lowering therapy on the prevention of acute kidney injury in cardiovascular surgery. Int Urol Nephrol. 2013;45(2):449–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kwiatkowski MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kwiatkowski, D.M., Krawczeski, C.D. (2015). Acute Kidney Injury After Cardiovascular Surgery in Children. In: Thakar, C., Parikh, C. (eds) Perioperative Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1273-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1273-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1272-8

  • Online ISBN: 978-1-4939-1273-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics