Skip to main content

Role of Novel Kidney Injury Biomarkers in Perioperative Acute Kidney Injury

  • Chapter
  • First Online:
Perioperative Kidney Injury

Abstract

The current principles of management in acute kidney injury (AKI) rely on the almost century-old gold standard of serum creatinine, which may be both delayed and nonspecific. Novel biomarkers that signal renal damage may be able to reform disease detection and management for perioperative AKI. Of the many potential candidates, interleukin-18 (IL-18), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver-type fatty-acid-binding protein (L-FABP), and cystatin C are at the forefront of clinical validation. Notably, these molecules can detect cases of subclinical AKI, which traditional measures may fail to identify, and may offer an opportunity for early treatment of AKI while providing valuable prognostic information. Though there is still progress to be made, the application of these biomarkers and the significant clinical changes they will bring about may be on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–6.

    Article  PubMed  Google Scholar 

  2. Colls PC. Notes on creatinine. J Physiol. 1896;20(2–3):107–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Gwinner W, et al. Acute tubular injury in protocol biopsies of renal grafts: prevalence, associated factors and effect on long-term function. Am J Transplant. 2008;8(8):1684–93.

    Article  PubMed  CAS  Google Scholar 

  4. Parikh CR, Devarajan P. New biomarkers of acute kidney injury. Crit Care Med. 2008;36(4):S159–65. doi:10.1097/CCM.0b013e318168c652.

    Article  PubMed  CAS  Google Scholar 

  5. Parikh CR, et al. Tubular proteinuria in acute kidney injury: a critical evaluation of current status and future promise. Ann Clin Biochem. 2010;47(4):301–12.

    Article  PubMed  CAS  Google Scholar 

  6. Siew ED, Ware LB, Ikizler TA. Biological markers of acute kidney injury. J Am Soc Nephrol. 2011;22(5):810–20.

    Article  PubMed  Google Scholar 

  7. Moran SM, Myers BD. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985;27(6):928–37.

    Article  PubMed  CAS  Google Scholar 

  8. Wu I, Parikh CR. Screening for kidney diseases: older measures versus novel biomarkers. Clin J Am Soc Nephrol. 2008;3(6):1895–901.

    Article  PubMed  CAS  Google Scholar 

  9. Carmichael P, Carmichael AR. Acute renal failure in the surgical setting. ANZ J Surg. 2003;73(3):144–53.

    Article  PubMed  Google Scholar 

  10. Altman RD. Overview of osteoarthritis. Am J Med. 1987;83(4, Supplement 2):65–9.

    Article  PubMed  CAS  Google Scholar 

  11. Supavekin S, et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63(5):1714–24.

    Article  PubMed  CAS  Google Scholar 

  12. Devarajan P, et al. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80(4):365–76.

    Article  PubMed  CAS  Google Scholar 

  13. Devarajan P. Proteomics for biomarker discovery in acute kidney injury. Semin Nephrol. 2007;27(6):637–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Diamond JR, Yoburn DC. Nonoliguric acute renal failure associated with a low fractional excretion of sodium. Ann Intern Med. 1982;96(5):597–600.

    Article  PubMed  CAS  Google Scholar 

  15. Zarich S, Fang LT, Diamond JR. Fractional excretion of sodium: exceptions to its diagnostic value. Arch Intern Med. 1985;145(1):108–12.

    Article  PubMed  CAS  Google Scholar 

  16. Miller TR, et al. Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med. 1978;89(1):47–50.

    Article  PubMed  CAS  Google Scholar 

  17. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73(2):213–24.

    Article  PubMed  CAS  Google Scholar 

  18. Edelstein CL, et al. Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury. Nephrol Dial Transplant. 2007;22(4):1052–61.

    Article  PubMed  CAS  Google Scholar 

  19. Ghayur T, et al. Caspase-1 processes IFN-[gamma]-inducing factor and regulates LPS-induced IFN-[gamma] production. Nature. 1997;386(6625):619–23.

    Article  PubMed  CAS  Google Scholar 

  20. Gu Y, et al. Activation of interferon-γ inducing factor mediated by Interleukin-1β converting enzyme. Science. 1997;275(5297):206–9.

    Article  PubMed  CAS  Google Scholar 

  21. Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest. 2001;107:1145–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Parikh CR, et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43(3):405–14.

    Article  PubMed  CAS  Google Scholar 

  23. Parikh CR, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203.

    Article  PubMed  CAS  Google Scholar 

  24. Kjeldsen L, et al. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425–32.

    PubMed  CAS  Google Scholar 

  25. Kuwabara T, et al. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int. 2008;75(3):285–94.

    Article  PubMed  Google Scholar 

  26. Mishra J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–43.

    Article  PubMed  CAS  Google Scholar 

  27. Hvidberg V, et al. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579(3):773–7.

    Article  PubMed  CAS  Google Scholar 

  28. Nickolas TL, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase–associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148(11):810–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mishra J, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  PubMed  CAS  Google Scholar 

  30. Ichimura T, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135–42.

    Article  PubMed  CAS  Google Scholar 

  31. Bailly V, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002;277(42):39739–48.

    Article  PubMed  CAS  Google Scholar 

  32. Han WK, et al. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–44.

    Article  PubMed  CAS  Google Scholar 

  33. Han WK, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2007;73(7):863–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Corsico B, et al. The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proc Natl Acad Sci. 1998;95(21):12174–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Yamamoto T, et al. Renal L-type fatty acid–binding protein in acute ischemic injury. J Am Soc Nephrol. 2007;18(11):2894–902.

    Article  PubMed  CAS  Google Scholar 

  36. Portilla D, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2007;73(4):465–72.

    Article  PubMed  Google Scholar 

  37. Grubb A. Cystatin C: properties and use as diagnostic marker. Adv Clin Chem. 2000;35:63–99.

    Article  PubMed  CAS  Google Scholar 

  38. Kaseda R, et al. Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem Biophys Res Commun. 2007;357(4):1130–4.

    Article  PubMed  CAS  Google Scholar 

  39. Nejat M, et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010;14(3):1–13.

    Article  Google Scholar 

  40. Herget-Rosenthal S, et al. Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem. 2004;50(3):552–8.

    Article  PubMed  CAS  Google Scholar 

  41. Endre ZH, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 2011;79(10):1119–30.

    Article  PubMed  CAS  Google Scholar 

  42. Vanmassenhove J, et al. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant. 2013;28(2):254–73.

    Article  PubMed  CAS  Google Scholar 

  43. Herget-Rosenthal S, et al. Cystatin C: efficacy as screening test for reduced glomerular filtration rate. Am J Nephrol. 2000;20(2):97–102.

    Article  PubMed  CAS  Google Scholar 

  44. Koyner JL, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008;74(8):1059–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Krawczeski CD, et al. Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol. 2010;5(9):1552–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Benöhr P, et al. Cystatin C – a marker for assessment of the glomerular filtration rate in patients with cisplatin chemotherapy. Kidney Blood Press Res. 2006;29(1):32–5.

    Article  PubMed  Google Scholar 

  47. Zhu J, et al. Cystatin C as a reliable marker of renal function following heart valve replacement surgery with cardiopulmonary bypass. Clin Chim Acta. 2006;374(1–2):116–21.

    Article  PubMed  CAS  Google Scholar 

  48. Biancofiore G, et al. Cystatin C as a marker of renal function immediately after liver transplantation. Liver Transpl. 2006;12(2):285–91.

    Article  PubMed  Google Scholar 

  49. Abu-Omar Y, et al. Evaluation of cystatin C as a marker of renal injury following on-pump and off-pump coronary surgery. Eur J Cardiothorac Surg. 2005;27(5):893–8.

    Article  PubMed  Google Scholar 

  50. Parikh CR, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011;22(9):1748–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Parikh CR, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22(9):1737–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Parikh CR, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol. 2013;8(7):1079–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Coca SG, Garg AX, Thiessen-Philbrook H, Koyner JL, Patel JD, Krumholz HM, Shlipak MG, Parikh CR. Urinary biomarkers of acute kidney injury and mortality 3-years after cardiac surgery. J Am Soc of Nephrol. 2013;25(5):1063–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chirag R. Parikh MD, PhD, FASN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parikh, C.R., Zhang, W.R. (2015). Role of Novel Kidney Injury Biomarkers in Perioperative Acute Kidney Injury. In: Thakar, C., Parikh, C. (eds) Perioperative Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1273-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1273-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1272-8

  • Online ISBN: 978-1-4939-1273-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics