Skip to main content

Kidney Function and Injury After Nephrectomy for Kidney Cancer

  • Chapter
  • First Online:
Perioperative Kidney Injury

Abstract

Radical nephrectomy (RN) is an established standard in the treatment of renal cell cancer. Surgical innovation has focused on preservation of residual renal function by way of partial nephrectomy (PN) in selected patients while reducing surgical invasiveness and preserving oncological efficacy. Yet, 25 % of patients undergoing kidney cancer surgery experience immediate postoperative complications, and the risk is higher in patients with preoperative chronic kidney disease (CKD). Key intraoperative risk factors of kidney injury include warm/cold ischemia, blood loss, effects of pneumoperitoneum, risk of rhabdomyolysis, and direct loss of nephron mass. Current standards of the biochemical assessment of residual renal function are suboptimal, as they do not allow direct assessment of remnant kidney function. Renal scintigraphic techniques may provide one method of assessing differential damage to each kidney, and tissue-specific biomarkers of ischemic kidney injury offer hope to add to the diagnostic and prognostic value to current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chow W-H, Devesa SS, Warren JL, et al. Rising incidence of renal cell cancer in the United States. JAMA. 1999;281(17):1628–31.

    Article  PubMed  CAS  Google Scholar 

  2. Hollingsworth JM, Miller DC, Daignault S, et al. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst. 2006;98(18):1331–4.

    Article  PubMed  Google Scholar 

  3. Robson CJ, Churchill BM, Anderson W. The results of radical nephrectomy for renal cell carcinoma. J Urol. 1969;101(3):297–301.

    PubMed  CAS  Google Scholar 

  4. Huang WC, Levey AS, Serio AM, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol. 2006;7(9):735–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lau WK, Blute ML, Weaver AL, et al. Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin Proc. 2000;75(12):1236–42.

    Article  PubMed  CAS  Google Scholar 

  6. Fergany AF, Hafez KS, Novick AC. Long-term results of nephron sparing surgery for localized renal cell carcinoma: 10-year followup. J Urol. 2000;163(2):442–5.

    Article  PubMed  CAS  Google Scholar 

  7. Uzzo RG, Wei JT, Hafez K, et al. Comparison of direct hospital costs and length of stay for radical nephrectomy versus nephron-sparing surgery in the management of localized renal cell carcinoma. Urology. 1999;54(6):994–8.

    Article  PubMed  CAS  Google Scholar 

  8. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.

    Article  PubMed  CAS  Google Scholar 

  9. Hollenbeck BK, Taub DA, Miller DC, et al. National utilization trends of partial nephrectomy for renal cell carcinoma: a case of underutilization? Urology. 2006;67(2):254–9.

    Article  PubMed  Google Scholar 

  10. Miller DC, Hollingsworth JM, Hafez KS, et al. Partial nephrectomy for small renal masses: an emerging quality of care concern? J Urol. 2006;175(3 Pt 1):853–7; discussion 858.

    Article  PubMed  CAS  Google Scholar 

  11. Simmons MN, Schreiber MJ, Gill IS. Surgical renal ischemia: a contemporary overview. J Urol. 2008;180(1):19–30.

    Article  PubMed  Google Scholar 

  12. Klatte T, Shariat SF, Remzi M. Systematic review and meta-analysis of perioperative and oncological outcomes of laparoscopic cryoablation versus laparoscopic partial nephrectomy for the treatment of small renal tumors. J Urol. 2013;191(5):1209–1217.

    Article  PubMed  Google Scholar 

  13. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2): 205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hakimi AA, Rajpathak S, Chery L, et al. Renal insufficiency is an independent risk factor for complications after partial nephrectomy. J Urol. 2010;183(1):43–7.

    Article  PubMed  CAS  Google Scholar 

  15. Porpiglia F, Fiori C, Bertolo R, et al. The effects of warm ischaemia time on renal function after laparoscopic partial nephrectomy in patients with normal contralateral kidney. World J Urol. 2012;30(2):257–63.

    Article  PubMed  Google Scholar 

  16. Parekh DJ, Weinberg JM, Ercole B, et al. Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrol. 2013;24(3):506–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wiesenthal JD, Fazio LM, Perks AE, et al. Effect of pneumoperitoneum on renal tissue oxygenation and blood flow in a rat model. Urology. 2011;77(6):1508. e9–15.

    Article  Google Scholar 

  18. Dunn MD, McDougall EM. Renal physiology. Laparoscopic considerations. Urol Clin North Am. 2000;27(4):609–14.

    Article  PubMed  CAS  Google Scholar 

  19. Kim EH, Larson JA, Figenshau M, et al. Perioperative complications of robot-assisted partial nephrectomy. Curr Urol Rep. 2014;15(1):377.

    Article  PubMed  Google Scholar 

  20. Weight CJ, Larson BT, Fergany AF, et al. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J Urol. 2010;183(4):1317–23.

    Article  PubMed  Google Scholar 

  21. Meyer TW, Rennke HG. Progressive glomerular injury after limited renal infarction in the rat. Am J Physiol. 1988;254(6 Pt 2):F856–62.

    PubMed  CAS  Google Scholar 

  22. Basile DP, Donohoe D, Roethe K, et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol. 2001;281(5):F887–99.

    PubMed  CAS  Google Scholar 

  23. Pagtalunan ME, Olson JL, Tilney NL, et al. Late consequences of acute ischemic injury to a solitary kidney. J Am Soc Nephrol. 1999;10(2):366–73.

    PubMed  CAS  Google Scholar 

  24. Lo LJ, Go AS, Chertow GM, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76(8):893–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Newsome BB, Warnock DG, McClellan WM, et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch Intern Med. 2008;168(6):609–16.

    Article  PubMed  CAS  Google Scholar 

  26. Porpiglia F, Fiori C, Bertolo R, et al. Long-term functional evaluation of the treated kidney in a prospective series of patients who underwent laparoscopic partial nephrectomy for small renal tumors. Eur Urol. 2012;62(1):130–5.

    Article  PubMed  Google Scholar 

  27. Coca SG, Yalavarthy R, Concato J, et al. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73(9):1008–16.

    Article  PubMed  CAS  Google Scholar 

  28. Coca SG, Parikh CR. Urinary biomarkers for acute kidney injury: perspectives on translation. Clin J Am Soc Nephrol. 2008;3(2):481–90.

    Article  PubMed  CAS  Google Scholar 

  29. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10): 2534–43.

    Article  PubMed  CAS  Google Scholar 

  30. Parikh CR, Jani A, Mishra J, et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant. 2006;6(7):1639–45.

    Article  PubMed  CAS  Google Scholar 

  31. Parikh CR, Mishra J, Thiessen-Philbrook H et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203

    Google Scholar 

  32. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  PubMed  CAS  Google Scholar 

  33. Devarajan P. Emerging biomarkers of acute kidney injury. Contrib Nephrol. 2007;156: 203–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charuhas V. Thakar MD, FASN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thakar, C.V., Gaitonde, K. (2015). Kidney Function and Injury After Nephrectomy for Kidney Cancer. In: Thakar, C., Parikh, C. (eds) Perioperative Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1273-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1273-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1272-8

  • Online ISBN: 978-1-4939-1273-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics