Skip to main content

Fabrication of Channel Waveguides in Chalcogenide Glass Films by a Focused Laser Beam

  • Chapter
  • First Online:
Planar Waveguides and other Confined Geometries

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 189))

  • 1739 Accesses

Abstract

We demonstrate a simple optical method for the fabrication of micrometer-width channel waveguides in chalcogenide glass (ChG) films, which does not require lift-off lithography. The method is based on photo-induced mass transport. For our experiments we use 400–600-nm-thick amorphous films of As2S3 and As10Se90 deposited in vacuum onto glass substrates. The waveguides are fabricated by a focused Ar ion laser beam (λ = 514 nm) with a waist diameter of ~0.7 μm. The positioning of the film in x-y-z-directions is controlled by computerized motor-driven stages whereby complex waveguide configurations can be drawn. For coupling of light (λ = 1.55 μm) between an optical fiber and the waveguide we used gratings, fabricated in the ChG, with a period of 0.8–1.5 μm and amplitude of 50–100 nm. The gratings are fabricated in an in-plane taper by laser illumination of the selected film area by two crossing p-polarized laser beams. We discuss mechanisms and kinetics of photo-induced mass transport in ChG films and possible contribution of viscous flow induced by a temperature gradient caused by the local heating of the film by the focused laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Greer, N. Mathur, Nature 437, 1246 (2005)

    Article  ADS  Google Scholar 

  2. P. Lucas, J. Phys. Condens. Matter 18, 5629 (2006)

    Article  ADS  Google Scholar 

  3. N. Carlie, J.D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L.C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, K. Richardson, Opt. Express 18, 26728 (2010)

    Article  ADS  Google Scholar 

  4. R.G. DeCorby, N. Ponnampalam, M.M. Pai, H.T. Nguyen, P.K. Dwivedi, T.J. Clement, C.J. Haugen, J.N. McMullin, S.O. Kasap, IEEE J. Sel. Top. Quant. Electron. 11, 539 (2005)

    Article  Google Scholar 

  5. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, Opt. Lett. 33, 2500 (2008)

    Article  ADS  Google Scholar 

  6. A. Saliminia, T.V. Galstian, A. Villeneuve, Phys. Rev. Lett. 85, 4112 (2000)

    Article  ADS  Google Scholar 

  7. M.L. Trunov, P.M. Lytvyn, P.M. Nagy, O.M. Dyachyns’ka, Appl. Phys. Lett. 96, 111908 (2010)

    Article  ADS  Google Scholar 

  8. Y. Kaganovskii, D.L. Beke, S. Kökényesi, Appl. Phys. Lett. 97, 061906 (2010)

    Article  ADS  Google Scholar 

  9. M.L. Trunov, P.M. Nagy, V. Takats, P.M. Lytvyn, S. Kokenyesi, E. Kalman, J. Non-Cryst. Solids 355, 1993 (2009)

    Article  ADS  Google Scholar 

  10. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edn. (Oxford University Press, New York, Oxford, 2007)

    Google Scholar 

  11. N.J. Harrick, Appl. Optics 10, 2344 (1971)

    Article  ADS  Google Scholar 

  12. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  13. J.A. Pradeep, P. Agarwal, J. Appl. Phys. 108, 043515 (2010)

    Article  ADS  Google Scholar 

  14. Y. Kaganovskii, D.L. Beke, S. Charnovych, S. Kökényesi, M.L. Trunov, J. Appl. Phys. 110, 063502 (2011)

    Article  ADS  Google Scholar 

  15. W. Roosbroeck, Phys. Rev. B 91, 282 (1953)

    Article  Google Scholar 

  16. C. Thomas, I. Joachimsthaler, R. Heiderhoff, L.J. Balk, J. Phys. D Appl. Phys. 37, 2785 (2004)

    Article  ADS  Google Scholar 

  17. S.R. Elliott, J. Non-Cryst. Solids 81, 71 (1986)

    Article  ADS  Google Scholar 

  18. H. Fritzsche, Semiconductors 32, 850 (1998)

    Article  ADS  Google Scholar 

  19. Y. Kaganovskii, M.L. Trunov, D.L. Beke, S. Kökényesi, Mater. Lett. 66, 159 (2011)

    Article  Google Scholar 

  20. M.L. Trunov, C. Cserhati, P.M. Lytvyn, Y. Kaganovskii, S. Kökényesi, J. Phys. D Appl. Phys. 46, 245303 (2013)

    Article  ADS  Google Scholar 

  21. U.C. Paek, A. Kestenbaum, J. Appl. Phys. 44, 2260 (1973)

    Article  ADS  Google Scholar 

  22. S.Y. Suh, D.L. Anderson, Appl. Optics 23, 3965 (1984)

    Article  ADS  Google Scholar 

  23. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, New York, 1954)

    Google Scholar 

  24. M. Lax, J. Appl. Phys. 48, 3919 (1977)

    Article  ADS  Google Scholar 

  25. K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, New York, 2011)

    Book  Google Scholar 

  26. G. Chaussemy, J. Fornazero, J.-M. Mackowski, J. Non-Cryst. Solids 58, 219 (1983)

    Article  ADS  Google Scholar 

  27. T. Schwarz-Selinger, D.G. Cahill, S.-C. Chen, S.-J. Moon, C.P. Grigoropoulos, Phys. Rev. B 64, 155323 (2001)

    Article  ADS  Google Scholar 

  28. V. Kolevzon, J. Exp. Theor. Phys. 87, 1105 (1998)

    Article  ADS  Google Scholar 

  29. D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, B. Luther-Davies, J. Appl. Phys. 107, 053106 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation (Grant # 894/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rosenbluh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shemesh, K., Kaganovskii, Y., Rosenbluh, M. (2015). Fabrication of Channel Waveguides in Chalcogenide Glass Films by a Focused Laser Beam. In: Marowsky, G. (eds) Planar Waveguides and other Confined Geometries. Springer Series in Optical Sciences, vol 189. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1179-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1179-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1178-3

  • Online ISBN: 978-1-4939-1179-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics