Skip to main content

Introduction to Cells Comprising the Nervous System

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

The brain consists of neurons and glial cells. Neurons are responsible for integrating input and responding to stimuli from both the internal and the external environment. The integration occurs via electrical and chemical signals that impinge on the receptive area of neurons known as dendrites, and the response is via propagation of an axonal potential. Glial cells have three functionally distinct subtypes, astrocytes, oligodendrocytes, and microglia. Astrocytes perform a variety of functions responsible for maintaining homeostasis in the brain through functions such as formation of the blood–brain barrier, preserving osmolarity, and the uptake, degradation, and secretion of neurotransmitters. Oligodendrocytes are responsible for the production of myelin, a lipid-rich substance that encapsulates neuronal axons. Microglia are responsible for immune surveillance and remodeling of the CNS during both normal development and injury. Together the cells of the brain form a highly metabolic and dynamic unit with robust requirements for oxygen and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CNS:

Central nervous system

GFAP:

Glial fibrillary acidic protein

MAG:

Myelin-associated glycoprotein

MAP:

Microglia-associated protein

MBP:

Myelin basic protein

OPC:

Oligodendrocyte precursor cell

RER:

Rough endoplasmic reticulum

References

  • Butt AM. Structure and function of oligodendrocytes. In: Kettenmann H, Ransom BR, editors. Neuroglia. 3rd ed. New York: Oxford University Press; 2012. p. 62–73.

    Chapter  Google Scholar 

  • Connor JR, Diamond MC, Connor JA, Johnson RE. A Golgi study of the dendritic morphology of socially reared aged rats. Exp Neurol. 1981;73:525–33.

    Article  CAS  PubMed  Google Scholar 

  • Crain JM, Nikodemova M, Watters JJ. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res. 2013;91(9):1143–51.

    Article  CAS  PubMed  Google Scholar 

  • Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol Rev. 2011;91:555–602.

    Article  CAS  PubMed  Google Scholar 

  • Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484(7392):105–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fogel AI, Li Y, Giza J, Wang Q, Lam TT, Modis Y, Biederer T. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J Biol Chem. 2010;285(45):34864–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge WP, Zhou W, Lou Q, Jan LY, Jan YN. Dividing glia cells maintain differentiated properties including complex morphology and functional synapses. Proc Natl Acad Sci U S A. 2009;106(1):328–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY. Local generation of glia is a major astrocyte source in postnatal cortex. Nature. 2012;484(7394):376–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graeber MB, Streit WJ. Microglia: active sensor and versatile effector cells in the pathologic brain. Nat Neurosci. 2010;10:1387–94.

    Google Scholar 

  • Grant G. How the 1906 Nobel Prize in physiology or medicine was shared between Golgi and Cajal. Brain Res Rev. 2007;55(2):490–8.

    Article  CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446(7139):1017–22.

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Verkhratsky A. Neuroglia: 150 years later. Trends Neurosci. 2008;31(12):653–9.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kadomatsu K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):442–8.

    Article  Google Scholar 

  • Li Y, Liu L, Barger SW, Griffith WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-mapk pathway. J Neurosci. 2003;23:1605–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merkle FT, Mirzadeh Z, Alvarez-Buylla A. Mosaic organization of neural stem cells in the adult brain. Science. 2007;317(5836):381–4.

    Article  CAS  PubMed  Google Scholar 

  • Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto A, Wake H, Moorhouse AJ, Nabekura J. Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci. 2013;7:70.

    PubMed Central  PubMed  Google Scholar 

  • Morrison BM, Lee Y, Rothstein JD. Oligodendroglia: metabolic supporters of axons. Trends Cell Biol. 2013;23(12):644–51.

    Article  CAS  PubMed  Google Scholar 

  • Nave KA. Myelination and support of axonal integrity by glia. Nature. 2010;468(7321):244–52.

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Wekerle H. Brain microglia: watchdogs with pedigree. Nat Neurosci. 2013;16(3):253–5.

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke NA, Weilelr NC, Micheva KD, Smith SJ. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci. 2012;13(6):365–79.

    PubMed Central  PubMed  Google Scholar 

  • Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A. 2012;109(4):E197–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prinz M, Mildner A. Microglia in the CNS: Immigrants from another world. Glia. 2011;59:177–87.

    Article  PubMed  Google Scholar 

  • Quarles RH. Myelin-associated glycoprotein (MAG): past, present, and beyond. J Neurochem. 2007;100(6):1431–48.

    CAS  PubMed  Google Scholar 

  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocytes and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A. 1998;95(20):11981–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009;10(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  • Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, et al. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics. 2008;5(2):207–24.

    Article  CAS  PubMed  Google Scholar 

  • Sheng Z, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 2012;13(2):77–93.

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew M, Vinters H. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Soulet D, Rivest S. Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol. 2008;8(4):508–18.

    Article  CAS  PubMed  Google Scholar 

  • Uylings HBM, Kuypers K, Diamond MC, Veltman WAM. Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Exp Neurol. 1978;62(3):658–77.

    Article  CAS  PubMed  Google Scholar 

  • Wloga D, Gaertig J. Post-translational modifications of microtubules. J Cell Sci. 2010;123:3447–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Connor .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peters, D.G., Connor, J.R. (2014). Introduction to Cells Comprising the Nervous System. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_2

Download citation

Publish with us

Policies and ethics