Skip to main content

Glycoconjugate Changes in Aging and Age-Related Diseases

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

The significance of glycosphingolipids and glycoproteins is discussed in their relation to normal aging and pathological aging, aging with diseases. Healthy myelin that looks stable is found to be gradually degraded and reconstructed throughout life for remodeling. An exciting finding is that myelin P0 protein is located in neurons and glycosylated in aging brains. In pathological aging, the roles of glycosphingolipids and glycoproteins as risk factors or protective agents for Alzheimer’s and Parkinson’s diseases are discussed. Intensive studies have been performed aiming to remove the risks from and to restore the functional deficits of the brain. Some of them are expected to be translated to therapeutic means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APP:

Amyloid precursor protein

Aβ:

Amyloid beta

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CBA:

Glucocerebrosidase

CNS:

Central nervous system

GnT-III:

N-acetylglucosaminyltransferase III

LCB:

Long-chain base

MAP5:

Microtubule-associated protein 5

NCAM:

Neural cell adhesion molecule

NFTs:

Neurofibrillary tangles

OPC:

Oligodendrocyte precursor cell

PD:

Parkinson’s disease

P-gp:

P-glycoprotein

PSA:

Polysialic acid

SAP:

Serum amyloid P

References

  • Abuznait AH, Cain C, Ingram D, Burk D, Kaddoumi A. Up-regulation of P-glycoprotein reduces intracellular accumulation of beta-amyloid: investigation of P-glycoprotein as a novel therapeutic target for Alzheimer’s disease. J Pharm Pharmacol. 2011;63:1111–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agrawal A, Singh PP, Bottazzi B, Garlanda C, Montovani A. Pattern recognition by pentraxins. Adv Exp Med Biol. 2009;653:98–116.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Caprihan A, Stephen JM. Development and decline of memory functions in normal, pathological and healthy successful aging. Brain Topogr. 2011;24:323–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akasaka-Manya K, Manya H, Sakurai Y, Wojczyk BS, Spitalnik SL, Endo T. Increased bisecting and core-fucosylated N-glycans on mutant human amyloid precursor proteins. Glycoconj J. 2008;25:775–86.

    CAS  PubMed  Google Scholar 

  • Akasaka-Manya K, Manya H, Sakurai Y, Wojczyk BS, Kozutsumi Y, Sato Y, et al. Protective effect of-glycan bisecting GlcNAc residues on β–amyloid production in Alzheimer’s disease. Glycobiology. 2010;20:99–106.

    CAS  PubMed  Google Scholar 

  • Ando S. Review: gangliosides in the nervous system. Neurochem Int. 1983;5:507–37.

    CAS  PubMed  Google Scholar 

  • Ando S. Biochemistry of brain aging. Nihon Rinsho. 1985;43:1399–403 (in Japanese).

    CAS  PubMed  Google Scholar 

  • Ando S. Neuronal dysfunction with aging and its amelioration. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:266–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ando S, Yu RK. Isolation and characterization of two isomers of brain tetrasialogangliosides. J Biol Chem. 1979;254:12224–9.

    CAS  PubMed  Google Scholar 

  • Ando S, Tanaka Y, Ono Y, Kon K. Incorporation rate of GM1 ganglioside into mouse brain myelin: effect of aging and modification by hormones and other compounds. Adv Exp Med Biol. 1984;174:241–8.

    CAS  PubMed  Google Scholar 

  • Ando S, Tanaka Y, Kon K. Membrane aging of the brain synaptosomes with special reference to gangliosides. In: Tettamanti G et al., editors. Gangliosides and neural plasticity. Padva: Liviana Press; 1986. p. 23–30.

    Google Scholar 

  • Ando S, Hirabayashi Y, Kon K, Inagaki F, Tate S, Whittaker VP. A trisialoganglioside containing a sialyl-α2,6-N-acetylgalactosamine residue is a cholinergic-specific antigen, Chol-1α. J Biochem. 1992;111:287–90.

    CAS  PubMed  Google Scholar 

  • Ando S, Tanaka Y, Waki H, Kon K, Iwamoto M, Fukui F. Gangliosides and sialylcholesterol as modulators of synaptic functions. Ann N Y Acad Sci. 1998;845:232–9.

    CAS  PubMed  Google Scholar 

  • Ando S, Kobayashi S, Waki H, Kon K, Fukui F, Tadenuma T, et al. Animal model of dementia induced by entorhinal damage and partial restoration of cognitive deficits by BDNF and carnitine. J Neurosci Res. 2002;70:519–27.

    CAS  PubMed  Google Scholar 

  • Ando S, Tanaka Y, Toyoda Y, Kon K. Turnover of myelin lipids in aging brain. Neurochem Res. 2003;28:5–13.

    CAS  PubMed  Google Scholar 

  • Ando S, Tanaka Y, Kobayashi S, Fukui F, Iwamoto M, Waki H, et al. Synaptic function of cholinergic-specific Chol-1α ganglioside. Neurochem Res. 2004;29:857–67.

    CAS  PubMed  Google Scholar 

  • Ariga T, Yanagisawa M, Wakada C, Ando S, Buccafusco JJ, McDonald MP, et al. Ganglioside metabolism in a transgenic mouse model of Alzheimer’s disease: expression of Chol-1α antigens in the brain. ASN Neuro. 2010;2:e00044.

    PubMed Central  PubMed  Google Scholar 

  • Ariga T, Wakada C, Yu RK. The pathological roles of ganglioside metabolism in Alzheimer’s disease: effect of gangliosides on neurogenesis. Int J Alzheimers Dis. 2011;2011:193618.

    PubMed Central  PubMed  Google Scholar 

  • Ariga T, Itokazu Y, McDonald MP, Hirabayashi Y, Ando S, Yu RK. Brain gangliosides of a transgenic mouse model of Alzheimer’s disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aα. ASN Neuro. 2013;5:141–8.

    CAS  PubMed  Google Scholar 

  • Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, et al. Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm. 2008;115:1001–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bednarski E, Lynch G. Cytosolic proteolysis of tau by cathepsin D in hippocampus following suppression of cathepsins B and L. J Neurochem. 1996;67:1846–55.

    CAS  PubMed  Google Scholar 

  • Ben-David O, Pewzner-Jung Y, Brenner O, Laviad EL, Kogot-Levin A, Weissberg I, et al. Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem. 2011;286:30022–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardo A, Harrison FE, McCord M, Zhao J, Bruchey A, Davies SS, et al. Elimination of GD3 synthase improves memory and reduces amyloid-β plaque load in transgenic mice. Neurobiol Aging. 2009;30:1777–91.

    CAS  PubMed  Google Scholar 

  • Beutler E, Grabowski G. Gaucher disease. In: Scriver CR, Beaudet al, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease. New York, NY: McGraw-Hill; 1995. p. 2641–70.

    Google Scholar 

  • Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P. Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the apo E4 allele. J Neural Transm. 1996;103:603–18.

    CAS  PubMed  Google Scholar 

  • Bowley MP, Cabral H, Rosene DL, Peters A. Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey. J Comp Neurol. 2010;518:3046–64.

    PubMed Central  PubMed  Google Scholar 

  • Bras J, Singleton A, Cookson MR, Hardy J. Potential role of ceramide metabolism in Lewy body disease. FEBS Lett. 2008;275:5767–73.

    CAS  Google Scholar 

  • Brunden KR. Age-dependent changes in the oligosaccharide structure of the major myelin glycoprotein, P0. J Neurochem. 1992;58:1659–66.

    CAS  PubMed  Google Scholar 

  • Brusés JL, Rutishauser U. Reguration of neural cell adhesion molecule polysialylation: evidence for nontranscriptional control and sensitivity to an intracellular pool of calcium. J Cell Biol. 1998;140:1177–86.

    PubMed Central  PubMed  Google Scholar 

  • Calzà L, Fernandez M, Giardino L. Cellular approaches to central nervous system remyelination stimulation: thyroid hormone to promote myelin repair via endogenous stem and precursor cells. J Mol Endocrinol. 2010;44:13–23.

    PubMed  Google Scholar 

  • Cantù L, Del Favero E, Sonnino S, Prinetti A. Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids. 2011;164:796–810.

    PubMed  Google Scholar 

  • Carrié I, Bélanger E, Portoukalian J, Rochford J, Ferland G. Lifelong low-phylloquinone intake is associated with cognitive impairments in old rats. J Nutr. 2011;141:1495–501.

    PubMed  Google Scholar 

  • Chapman J, Sela BA, Wertman E, Michaelson DM. Antibodies to ganglioside GM1 in patients with Alzheimer’s disease. Neurosci Lett. 1988;86:235–40.

    CAS  PubMed  Google Scholar 

  • Choo-Smith L-P, Garzon-Rodriguez W, Glabe CG, Surewicz WK. Acceleration of amyloid fibril formation by specific binding of Aβ-(1-40) peptide to ganglioside-containing membrane vesicles. J Biol Chem. 1997;272:22987–90.

    CAS  PubMed  Google Scholar 

  • Clark LN, Ross BM, Wang Y, Mejia-Santana H, Harris J, Louis ED, et al. Mutations on the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology. 2007;69:1270–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford JR, Bjorklund NL, Taglialatela G, Gomer RH. Brain serum amyloid P levels are reduced in individuals that lack dementia while having Alzheimer’s disease neuropathology. Neurochem Res. 2012;37:795–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuello AC, Garofalo L, Kenigsberg RL, Maysinger D. Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons. Proc Natl Acad Sci U S A. 1989;86:2056–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahlgren KN, Manelli AM, Stine Jr WB, Baker LK. Oligomeric and fibrillar species of amyloid- β peptides differentially affect neuronal viability. J Biol Chem. 2002;277:32046–53.

    CAS  PubMed  Google Scholar 

  • DePaolo J, Goker-Alpan O, Samaddar T, Lopez G, Sidransky E. The association between mutations in the lysosomal protein glucocerebrosidase and parkinsonism. Mov Disord. 2009;24:1571–8.

    PubMed Central  PubMed  Google Scholar 

  • Derrington EA, Borroni E. The developmental expression of the cholinergic-specific antigen Chol-1 in the central and peripheral nervous system.of the rat. Dwvelop. Brain Res. 1990;52:131–40.

    CAS  Google Scholar 

  • Dusart I, Morel MP, Wehrlé R, Sotelo C. Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar. J Comp Neurol. 1999;408:399–418.

    CAS  PubMed  Google Scholar 

  • El Maarouf A, Petridis AK, Rutishauser U. Use of polisialic acid in repair of the central nervous system. Proc Natl Acad Sci U S A. 2006;103:16989–94.

    PubMed Central  PubMed  Google Scholar 

  • Emory CR, Ala TA, Frey WH. Ganglioside monoclonal antibody (A2B5) labels Alzheimer’s neurofibrillary tangles. Neurology. 1987;37:768–72.

    CAS  PubMed  Google Scholar 

  • Eustache F, Desgranges B, Giffard B, de la Sayette V, Barom J-C. Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport. 2001;12:683–5.

    CAS  PubMed  Google Scholar 

  • Favaron M, Manev H, Alho H, Bertolino M, Ferret B, Guidotti A, et al. Gangliosides prevent glutamate and kinate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortes. Proc Natl Acad Sci U S A. 1988;85:7351–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez M, Giuliani A, Pirondi S, D’Intino G, Giardino L, Aloe L, et al. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc Natl Acad Sci U S A. 2004;101:16363–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari G, Anderson B, Stephens B, Kaplan D, Greene L. Prevention of apoptotic neuronal death by GM1 ganglioside. involvement of Trk neurotrophin receptors. J Biol Chem. 1995;270:3074–80.

    CAS  PubMed  Google Scholar 

  • Fiala M, Liu PT, Espinosa-Jeffrey A, Rosenthal MJ, Bernard G, Ringman JM, et al. Innate immunity and transcription of MGAT-III and toll-like receptors in Alzheimer’s disease patients are improved by bisdemetoxycurcumin. Proc Natl Acad Sci U S A. 2007;104:12849–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franco PG, Silverstroff L, Soto EF, Pasquini JM. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp Neurol. 2008;212:458–67.

    CAS  PubMed  Google Scholar 

  • Furuse H, Waki H, Kaneko K, Fujii S, Miura M, Sasaki H, et al. Effect of the mono- and tetra-sialogangliosides, GM1 and GQ1b, on long-term potentiation in the CA1 hippocampal neurons of the guinea pig. Exp Brain Res. 1998;123:307–14.

    CAS  PubMed  Google Scholar 

  • Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. Ann Neurol. 2012;72:455–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury: a randomized placebo-controlled trial with GM-1 ganglioside. N Engl J Med. 1991;324:1829–38.

    CAS  PubMed  Google Scholar 

  • Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, Mclnerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers. J Med Genet. 2004;41:937–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goker-Alpan O, Stubblefield BK, Giasson BI, Sidransky E. Glucocerebrosidase is present in α-synuclein inclusions in Lewy body disorders. Acta Neuropathol. 2010;120:641–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall JG, Pauli RM, Wilson KM. Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med. 1980;68:122–40.

    CAS  PubMed  Google Scholar 

  • Hartz AMS, Miller DS, Bauer B. Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer’s disease. Mol Pharmacol. 2010;77:715–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljarvi L, Koivisto E, et al. Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience. 1995;64:375–84.

    CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Hirota M, Matsumoto M, Tanaka H, Obata K, Ando S. Development changes of C-series polysialogangliosides in chick brains revealed by mouse monoclonal antibodies M6704 and M7103 with different epitope specificities. J Biochem. 1988;104:973–9.

    CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Nakao T, Irie F, Whittaker VP, Kon K, Ando S. Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain. J Biol Chem. 1992;267:12973–8.

    CAS  PubMed  Google Scholar 

  • Ho NF, Han SP, Dawe GS. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice. BMC Neurosci. 2009;10:57.

    PubMed Central  PubMed  Google Scholar 

  • Hornykiewicz O. Metabolism of brain dopamine in human parkinsonism: Neurochemical and clinical aspects. In: Costa E, Yahr MD, editors. Biochemistry and pharmacology of the brain ganglia. New York, NY: Raven; 1966. p. 171–81.

    Google Scholar 

  • Huttenlocher PR. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res. 1979;163:195–205.

    CAS  PubMed  Google Scholar 

  • Inoko E, Nishimura Y, Tanaka H, Takahashi T, Furukawa K, Kitajima K, et al. Developmental stage-dependent expression of an alpha 2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology. 2010;20:916–28.

    CAS  PubMed  Google Scholar 

  • Irie F, Hashikura T, Tai T, Seyama Y, Hirabayashi Y. Distribution of cholinergic neuron-specific gangliosides (GT1aα and GQ1bα) in the rat central nervous system. Brain Res. 1994;665:161–6.

    CAS  PubMed  Google Scholar 

  • Irie F, Kurono S, Li YT, Seyama Y, Hirabayashi Y. Isolation of three novel cholinergic neuron-specific gangliosides from bovine brain and their vitro syntheses. Glycoconj J. 1996;13:177–86.

    CAS  PubMed  Google Scholar 

  • Ishaque A, Roomi MW, Szymanska I, Kowalski S, Eylar EH. The P0 glycoprotein of peripheral nerve myelin. Can J Biochem. 1980;58:913–21.

    CAS  PubMed  Google Scholar 

  • Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, et al. A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci. 2002;22:6507–14.

    CAS  PubMed  Google Scholar 

  • Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW. Colocalization of tau and alpha-synuclein epitopes in Lewy bodies. J Neuropathol Exp Neurol. 2003;62:389–97.

    CAS  PubMed  Google Scholar 

  • Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K. Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, and endogenous seed for Alzheimer amyloid. J Biol Chem. 2001;276:24985–90.

    CAS  PubMed  Google Scholar 

  • Kannagi R, Nudelmann E, Hakomori SI. Possible role of ceramide in defining structure and function of membrane glycolipids. Proc Natl Acad Sci U S A. 1982;79:3470–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura N, Yanagisawa K. Endosomal accumulationof GM1 ganglioside-bound amyloid β-protein in neurons of aged monkey brains. Neuroreport. 2007;18:1669–73.

    CAS  PubMed  Google Scholar 

  • Kirkwood TB. Evolution of aging. Nature. 1977;270:301–4.

    CAS  PubMed  Google Scholar 

  • Klaissle P, Lesemann A, Huehnchen P, Hermann A, Storch A, Steiner B. Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. BMC Neurosci. 2012;13:132.

    PubMed Central  PubMed  Google Scholar 

  • Kobata A. Structures and functions of the sugar chains of glycoproteins. Eur J Biochem. 1992;209:483–501.

    CAS  PubMed  Google Scholar 

  • Kobata A. Glycobiology in the field of gerontology (glycogerontology). Adv Exp Med Biol. 2011;705:411–29.

    CAS  PubMed  Google Scholar 

  • Kolstoe SE, Ridha BH, Bellotti V, Wang N, Robinson CV, Crutch SJ, et al. Molecular dissection of Alzheimer’s disease neuropathology by depletion of serum amyloid P component. Proc Natl Acad Sci U S A. 2009;106:7619–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kono S, Ouchi Y, Terada T, Ida H, Suzuki M, Miyajima H. Functional brain imaging in glucocerebrosidase mutation carriers with and without parkinsonism. Mov Disord. 2010;25:1823–9.

    PubMed  Google Scholar 

  • Kotani M, Kawashima I, Ozawa H, Terashima T, Tai T. Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology. 1993;3:137–46.

    CAS  PubMed  Google Scholar 

  • Ledeen RW, Yu RK. Gangliosides: structure, isolation, and analysis. Meth Enzymol. 1982;83:139–92.

    CAS  PubMed  Google Scholar 

  • Lesage S, Anheim M, Condroyen C, Pollak P, Durif F, Dupuits C, et al. Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease. Hum Mol Genet. 2011;20:202–10.

    CAS  PubMed  Google Scholar 

  • Lopez-Toledano MA, Shelanski ML. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci. 2004;24:5439–44.

    CAS  PubMed  Google Scholar 

  • Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab. 2004;81:70–3.

    CAS  PubMed  Google Scholar 

  • Macias M, Fehr S, Dwornik A, Sulejczak D, Wiater M, Czarkowska-Bauch J, et al. Exercise increases mRNA levels for adhesion molecules N-CAM and L1 correlating with BDNF response. Neuroreport. 2002;13:2527–30.

    CAS  PubMed  Google Scholar 

  • Majocha RE, Jungalwala FB, Rodenrys A, Marotta CA. Monoclonal antibody to embryonic CNS antigen A2B5 provides evidence for the involvement of membrane components at sites of Alzheimer degeneration and detects sulfatides as well as gangliosides. J Neurochem. 1989;53:953–61.

    CAS  PubMed  Google Scholar 

  • Manev H, Favaron M, Vicini S, Guidotti A, Costa E. Glutamate-induced neuronal death in primary cultures of cerebeller granule cells: protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther. 1990;252:419–27.

    CAS  PubMed  Google Scholar 

  • Mansson J-E, Vanier M-T, Svennerholm L. Changes in the fatty acid and sphingosine composition of the major gangliosides of human brain with age. J Neurochem. 1978;30:273–5.

    CAS  PubMed  Google Scholar 

  • Masliah E, Terry RD. Role of synaptic pathology in the mechanisms of dementia in Alzheimer’s disease. Clin Neurosci. 1993;1:192–8.

    Google Scholar 

  • Matsumura S, Shinoda K, Yamada M, Yokojima S, Inoue M, Ohnishi T, et al. Two distinct amyloid β-protein (A β) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analysis. J Biol Chem. 2011;286:11555–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher’s disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.

    Google Scholar 

  • McFarlane I, Georgopoulou N, Coughlan CM, Gillian AM, Breen KC. The role of the protein glycosylation state in the control of cellular transport of the amyloid β-precursor protein. Neuroscience. 1999;90:15–25.

    CAS  PubMed  Google Scholar 

  • Mitsui J, Mizuta I, Toyoda A, Ashida R, Takahashi Y, Goto J, et al. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol. 2009;66:571–6.

    PubMed  Google Scholar 

  • Mizutani T, Kasahara M. Hippocampal atrophy secondary to entorhinal cortical degeneration in Alzheimer-type dementia. Neurosci Lett. 1997;222:119–22.

    CAS  PubMed  Google Scholar 

  • Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N. Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A. 1995;92:5087–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura H, Kobayashi S, Ohashi Y, Ando S. Age-changes of brain synapses and synaptic plasticity in response to an enriched environment. J Neurosci Res. 1999;56:307–15.

    CAS  PubMed  Google Scholar 

  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Caims NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.

    PubMed Central  PubMed  Google Scholar 

  • Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Robin H, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain. 2009;132:1783–94.

    PubMed Central  PubMed  Google Scholar 

  • Norton WT, Poduslo SE. Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem. 1973;21:759–73.

    CAS  PubMed  Google Scholar 

  • O’Nuallian B, Freir DB, Nicoll AJ, Risse E, Ferguson N, Herron CE, et al. Aβ dimers rapidly form stable synaptotoxic protofibrils. J Neurosci. 2010;30:14411–9.

    Google Scholar 

  • Oderfeld-Nowak B, Casamenti F, Pepeu G. Gangliosides in the repair of brain cholinergic neurons. Acta Biochim Pol. 1993;40:395–404.

    CAS  PubMed  Google Scholar 

  • Ohmi Y, Ohkawa Y, Yamauchi Y, Tajima O, Furukawa K, Furukawa K. Essential roles of gangliosides in the formation and maintenance of membrane microdomains in brain tissues. Neurochem Res. 2012;37:1185–91.

    CAS  PubMed  Google Scholar 

  • Oikawa N, Yamaguchi K, Ogino K, Taki T, Yuyama K, Yamamoto N, et al. Gangliosides determine the amyloid pathology of Alzheimer’s disease. Neuroreport. 2009;20:1043–6.

    CAS  PubMed  Google Scholar 

  • Pahlsson P, Shakin-Eshleman SH, Spitalnik SL. N-Linked glycosylation of β-amyloid precursor protein. Biochem Biophys Res Commun. 1992;189:1667–73.

    CAS  PubMed  Google Scholar 

  • Palestini P, Masserini M, Sonnino S, Giuliani A, Tettamanti G. Changes in the ceramide composition of rat forebrain gangliosides with age. J Neurochem. 1990;54:230–5.

    CAS  PubMed  Google Scholar 

  • Palestini P, Masserini M, Fiorilli A, Calappi E, Tettamanti G. Age-related changes in the ceramide composition of the major gangliosides present in rat brain subcellular fractions enriched in plasma membranes of neuronal and myelin origin. J Neurochem. 1993;61:955–60.

    CAS  PubMed  Google Scholar 

  • Pender MP, Csurhes PA, Wolfe NP, Hooper KD, Good MF, McCombe PA, et al. Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis. J Clin Neurosci. 2003;10:63–6.

    CAS  PubMed  Google Scholar 

  • Pepys MB, Herbert J, Hutchinson WL, Tennent GA, Lachmann HJ, Gallimore JR, et al. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature. 2002;417:254–9.

    CAS  PubMed  Google Scholar 

  • Pestronk A, Adams RN, Clawson L, Cornblath D, Kuncl RW, Griffin D, et al. Serum antibodies to GM1 ganglioside in amyotrophic lateral sclerosis. Neurology. 1988;38:1457–61.

    CAS  PubMed  Google Scholar 

  • Pestronk A, Chaudhry V, Feldman EL, Griffin JW, Cornblath DR, Denys EH, et al. Lower motor neuron syndromes defined by patterns of weakness, nerve conduction abnormalities, and high titers of antiglycolipid antibodies. Ann Neurol. 1990;27:316–26.

    CAS  PubMed  Google Scholar 

  • Pestronk A, Lopate G, Kornberg AJ, Elliott JL, Blume G, Yee WC, et al. Distal lower motor neuron syndrome with high-titer serum IgM anti-GM1 antibodies: improvement following immunotherapy with monthly plasma exchange and intravenous cyclophosphamide. Neurology. 1994;44:2027–31.

    CAS  PubMed  Google Scholar 

  • Peters A, Sethares C. Is there remyelination during aging of the primate central nervous system? J Comp Neurol. 2003;460:238–54.

    PubMed  Google Scholar 

  • Peters A, Sethares C, Killiany R. Effects of age on the thickness of myelin sheath in monkey primary visual cortex. J Comp Neurol. 2001;435:241–8.

    CAS  PubMed  Google Scholar 

  • Polo A, Kirschner G, Guidotti A, Costa E. Brain content of GSLs after oral administration of monosialoganglioside GM1 and LIGA20 to rats. Mol Chem Neuropathol. 1994;21:41–53.

    CAS  PubMed  Google Scholar 

  • Presse N, Shatenstein B, Kergoat MJ, Ferland G. Low vitamin K intakes in community-dwelling elders at an early stage of Alzheimer’s disease. J Am Diet Assoc. 2008;108:2095–9.

    PubMed  Google Scholar 

  • Probst A, Basler V, Bron B, Ulrich J. Neuritic plaques in senile dementia of Alzheimer type: a Golgi analysis in the hippocampal region. Brain Res. 1983;268:249–54.

    CAS  PubMed  Google Scholar 

  • Rabin SJ, Mocchetti I. GM1 ganglioside activates the high-affinity nerve growth factor receptor TrkA. J Neurochem. 1995;65:347–54.

    CAS  PubMed  Google Scholar 

  • Rabin SJ, Bachis A, Mocchetti I. Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem. 2002;277:49466–72.

    CAS  PubMed  Google Scholar 

  • Rhouma FB, Kallel F, Kefi R, Cherif W, Nagara M, Azaiez H, et al. Adult Gaucher disease in southern Tunisia: report of three cases. Diagn Pathol. 2012;7:4.

    PubMed Central  PubMed  Google Scholar 

  • Richardson PJ, Walker JH, Jones RT, Whittaker VP. Identification of a cholinergic-specific antigen Chol-1 as a ganglioside. J Neurochem. 1982;38:1605–14.

    CAS  PubMed  Google Scholar 

  • Ryu BR, Choi DW, Hartley DM, Costa E, Jou I, Gway BJ. Attenuation of cortical neuronal apoptosis by gangliosides. J Pharmacol Exp Ther. 1999;290:811–6.

    CAS  PubMed  Google Scholar 

  • Saito M, Yu RK. Role of myelin-associated neuraminidase in the ganglioside metabolism of rat brain myelin. J Neurochem. 1992;58:83–7.

    CAS  PubMed  Google Scholar 

  • Saito M, Yu RK. Possible role of myelin-neuraminidase in membrane adhesion. J Neurosci Res. 1993;36:127–32.

    CAS  PubMed  Google Scholar 

  • Saito S, Kobayashi S, Ohashi Y, Igarashi M, Komiya Y, Ando S. Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin content. J Neurosci Res. 1994;39:57–62.

    CAS  PubMed  Google Scholar 

  • Saito M, Tanaka Y, Tang C-P, Yu RK, Ando S. Characterization of sialidase activity in mouse synaptic plasma membranes and its age-related changes. J Neurosci Res. 1995;40:401–6.

    CAS  PubMed  Google Scholar 

  • Saito M, Hagita H, Ito M, Ando S, Yu RK. Age-dependent reduction in sialidase activity of nuclear membranes from mouse brain. Exp Gerontol. 2002;37:937–41.

    CAS  PubMed  Google Scholar 

  • Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM, et al. CNS expression of glucocerebrosidase corrects α-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci U S A. 2011;108:12101–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sardi SP, Clarke J, Kinnecom C, Viel C, Chan M, Tamsett TJ, Treleaven CM, et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc Natl Acad Sci U S A. 2013;110:3537–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato Y, Endo T. Alterations with age of the neurons expressing P0 in the rat spinal cord. Neurosci Lett. 2000;281:41–4.

    CAS  PubMed  Google Scholar 

  • Sato Y, Endo T. Alteration of brain glycoproteins during aging. Geriatr Gerontol Int. 2010;10:S32–40.

    PubMed  Google Scholar 

  • Sato S, Fujita S, Furukata K, Ogura H, Yoshimura S, Itoh M, et al. Synthesis of 2-(5-cholesten-3β-yloxy)glycosides of N-acetyl-D-neuraminic acid derivatives. Chem Pharm Bull. 1987;35:4043–8.

    CAS  Google Scholar 

  • Sato Y, Kimura M, Yasuda C, Nakao Y, Tomita M, Kobata A, Endo T. Evidence for the presence of major peripheral myelin glycoprotein P0 in mammalian spinal cord and a change of its glycosylation state during aging. Glycobiology. 1999;9:655–60.

    CAS  PubMed  Google Scholar 

  • Sato Y, Akimoto Y, Kawakami H, Hirano H, Endo T. Location of sialylglycoconjugates containing the Siaα2-3Gal and Siaα2-6Gal groups in the rat hippocampus and the effect of aging on their expression. J Histochem Cytochem. 2001;49:1311–9.

    CAS  PubMed  Google Scholar 

  • Sato Y, Suzuki Y, Ito E, Shimazaki S, Ishida M, Yamammoto T, et al. Identification and characterization of an increased glycoprotein in aging: age-associated translocation of cathepsin D. Mech Ageing Dev. 2006;127:771–8.

    CAS  PubMed  Google Scholar 

  • Schachner M, Martini R. Glycans and the modulation of neural-recognition molecule function. Trends Neurosci. 1995;18:183–91.

    CAS  PubMed  Google Scholar 

  • Scheff SW, Sparks DL, Price DA. Quantitative assessment of synaptic density in the entorhinal cortex in Alzheimer’s disease. Ann Neurol. 1993;34:356–61.

    CAS  PubMed  Google Scholar 

  • Scheibel AB, Tomiyasu U. Dendritic sprouting in Alzheimer’s presenile dementia. Exp Neurol. 1978;60:1–8.

    CAS  PubMed  Google Scholar 

  • Schneider JS, Pope A, Simpson K, Taggart J, Smith MG, DiStetano L. Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science. 1992;256:843–6.

    CAS  PubMed  Google Scholar 

  • Schulze ET, Geary EK, Susmaras TM, Paliga JT, Maki PM, Little DM. Anatomical correlates of age-related working memory declines. J Aging Res. 2011;2011:606871.

    PubMed Central  PubMed  Google Scholar 

  • Segler-Stahl K, Webster JC, Brunngraber EG. Changes in the concentration and composition of human brain gangliosides with aging. Gerontology. 1983;29:161–8.

    CAS  PubMed  Google Scholar 

  • Seki T, Arai Y. The persistent expression of a highly polysialylated NCAM in the dentate gyrus of the adult rat. Neurosci Res. 1991;12:503–13.

    CAS  PubMed  Google Scholar 

  • Seren MS, Rubini R, Lazzaro A, Zanoni R, Fiori MG, Leon A. Protective effects of a monosialoganglioside derivative following transitory forebrain ischemia in rats. Stroke. 1990;21:1607–12.

    CAS  PubMed  Google Scholar 

  • Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJM. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci. 2008;11:1024–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shields SA, Gilson JM, Blakemore WF, Franklin RJ. Remyelination occurs as extensively but slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia. 1999;28:77–83.

    CAS  PubMed  Google Scholar 

  • Sidransky E, Nalls MA, Aasly JO, Aharon-Perez J, Annesi G, Barbose ER, et al. Multi-center analysis of glucocerebrosidase mutations in Parkinson disease. N Engl J Med. 2009;361:1651–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, et al. Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010;69:1034–43.

    CAS  PubMed  Google Scholar 

  • Sim FJ, Zhao C, Penderis J, Franklin RJ. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 2002;22:2451–9.

    CAS  PubMed  Google Scholar 

  • Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M. Imaging mass spectrometry technology and application of ganglioside study: visualization of age-dependent accumulation of C20- ganglioside molecular species in the mouse hippocampus. PLoS One. 2008;3(9):e3232.

    PubMed Central  PubMed  Google Scholar 

  • Sun GY, Sun KL. Metabolism of arachidonyl phosphoglycerides in mouse brain subcellular fractions. J Neurochem. 1979;32:1053–9.

    CAS  PubMed  Google Scholar 

  • Sundaram KS, Lev M. Warfarin administration reduces synthesis of sulfatides and other sphingolipids in mouse brain. J Lipid Res. 1988;29:1475–9.

    CAS  PubMed  Google Scholar 

  • Sunwoo M-K, Kim S-M, Lee S, Lee RH. Parkinsonism associated with glucocerebrosidase mutation. J Clin Neurol. 2011;7:99–101.

    PubMed Central  PubMed  Google Scholar 

  • Suzuki K. The pattern of mammalian brain gangliosides—III. Regional and developmental differences. J Neurochem. 1965;12:969–79.

    CAS  Google Scholar 

  • Svennerholm L, Ställberg-Stenhagen S. Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age. J Lipid Res. 1968;9:215–25.

    CAS  PubMed  Google Scholar 

  • Svennerholm L, Boström K, Fredman P, Månsson J-E, Rosengren B, Rynmaek B-M. Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta. 1989;1005:109–17.

    CAS  PubMed  Google Scholar 

  • Svennerholm L, Boström K, Helander CG, Jungbjer B. Membrane lipids in the aging human brain. J Neurochem. 1991;56:2051–9.

    CAS  PubMed  Google Scholar 

  • Svennerholm L, Bostöm K, Jungbjer B, Olsson L. Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem. 1994;63:1802–11.

    CAS  PubMed  Google Scholar 

  • Takahashi H, Hirokawa K, Ando S, Obata K. Immunohistological study on brains of Alzheimer’s disease using antibodies to fetal antigens, C-series gangliosides and microtubule-associated protein 5. Acta Neuropathol. 1991;81:626–31.

    CAS  PubMed  Google Scholar 

  • Taki T, Hirabayashi Y, Ichikawa H, Ando S, Kon K, Tanaka Y, et al. A ganglioside of rat ascites hepatoma AH7974F cells: occurrence of a novel disialoganglioside (GD1aα) with a unique N-acetylneuraminyl-α2,6-N-acetylgalactosamine structure. J Biol Chem. 1986;261:3075–8.

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Ando S. Modulation of cholinergic synaptic functions by sialylcholesterol. Glycoconj J. 1996;13:321–6.

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Hasegawa A, Ando S. Impaired synaptic functions with aging as characterized by decreased calcium influx and acetylcholine release. J Neurosci Res. 1996;43:63–70.

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Waki H, Kon K, Ando S. Gangliosides enhance KCl-induced Ca2+ influx and acetylcholine release in brain synaptosomes. Neuro Report. 1997;8:2203–7.

    CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synaptic loss in the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.

    CAS  PubMed  Google Scholar 

  • Uchida Y. Molecular mechanism of regeneration in Alzheimer’s disease brain. Geriatr Gerontol Int. 2010;10:S158–68.

    PubMed  Google Scholar 

  • Ulbanyi Z, Laszlo L, Yomasi TB, Toth E, Mekes E, Sass M, et al. Serum amyloid P component induces neuronal apoptosis and beta-amyloid immunoreactivity. Brain Res. 2003;988:67–77.

    Google Scholar 

  • Vaccarino F, Giodotti A, Costa E. Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc Natl Acad Sci U S A. 1987;84:8707–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanier MT, Holm M, Öhman R, Svennerholm L. Developmental profiles of gangliosides in human and rat brain. J Neurochem. 1971;18:581–92.

    CAS  PubMed  Google Scholar 

  • Vogelgesang S, Warzok RW, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer HK, et al. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 2004;1:121–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waki H, Kon K, Tanaka Y, Ando S. Facile methods for isolation of gangliosides in a small scale: age-related changes of gangliosides in mouse brain synaptic plasma membranes. Anal Biochem. 1994;222:156–62.

    CAS  PubMed  Google Scholar 

  • Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, et al. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging. 2005;26:1261–70.

    PubMed  Google Scholar 

  • Westbroek W, Gustafson AM, Sidransky E. Exploring the link between glucocerebrosidase mutations and parkinsonism. Trends Mol Med. 2011;17:485–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wieraszko A, Seifert W. Evidence for the functional role of monosialoganglioside GM1 in synaptic transmission in rat hippocampus. Brain Res. 1986;371:305–13.

    CAS  PubMed  Google Scholar 

  • Wu G, Lu Z-H, Wang J, Wang Y, Xie X, Meyenhofer MF, et al. Enhanced susceptibility to kainite-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA20, a membrane-permeant analogue GM1. J Neurochem. 2005;25:11014–22.

    CAS  Google Scholar 

  • Wu G, Lu Z-H, Kulkarni N, Amin R, Ledeen RW. Mice lacking major gangliosides develop parkinsonism. Neurochem Res. 2011;36:1706–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Lu Z-H, Kulkarni N, Ledeen RW. Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res. 2012;90:1997–2008.

    CAS  PubMed  Google Scholar 

  • Yamada S, Mizutani T, Asano T, Enomoto M, Sakata M, Esaki Y, et al. Age-related brain atrophy with a constant cortical thickness in the normal elderly. Neuropathology. 1998;18:276–83.

    Google Scholar 

  • Yamamoto N, Matsubara E, Maeda S, Minagawa H, Takashima A, Maruyama W, et al. A ganglioside-induced toxic soluble Α β assembly, its enhanced formation from Α β bearing the Arctic mutation. J Biol Chem. 2007;282:2646–55.

    CAS  PubMed  Google Scholar 

  • Yanagisawa K, Odaka A, Suzuki N, Ihara Y. GM1 ganglioside-bound amyloid β-protein (A β): a possible form of preamyloid in Alzheimer’s disease. Nat Med. 1995;1:1062–6.

    CAS  PubMed  Google Scholar 

  • Yap TL, Grushus JM, Velayati A, Westbroek W, Goldin E, Moaven N, et al. α-Synuclein interacts with glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem. 2011;286:28080–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasojima K, Schwab C, McGeer EG, McGeer PL. Human neurons generate C-reactive protein and amyloid P: upreguration in Alzheimer’s disease. Brain Res. 2000;887:80–9.

    CAS  PubMed  Google Scholar 

  • Yazaki T, Miura M, Asou H, Kitamura K, Toya S, Uyemura K. Glycopeptide of P0 protein inhibits hemophilic cell adhesion: competition assay with transformants and peptides. FEBS Lett. 1992;307:361–6.

    CAS  PubMed  Google Scholar 

  • Yohe HC, Roark DE, Rosenberg A. C20 sphingosine as a relevant factor in determining aggregative properties of gangliosides. J Biol Chem. 1976;251:7083–7.

    CAS  PubMed  Google Scholar 

  • Yu RK, Iqbal K. Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya : gangliosides of human myelin oligodendroglia and neurons. J Neurochem. 1979;32:293–300.

    CAS  PubMed  Google Scholar 

  • Yu RK, Bieberich E, Xia T, Zeng G. Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res. 2004;45:783–93.

    CAS  PubMed  Google Scholar 

  • Yu RK, Tsai YT, Ariga T. Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res. 2012;37:1230–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yusuf HKM, Dickerson JWT. Disialoganglioside GD1a of rat brain subcellular particles during development. Biochem J. 1978;174:655–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zappia M, Crescibene L, Bosco D, Arabia G, Nicoletti G, Bagalia A, et al. Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol Scand. 2002;106:54–7.

    CAS  PubMed  Google Scholar 

  • Zhang J, Kramer EG, Asp L, Dutta DJ, Navrazhina K, Pham T, et al. Promoting myelin repair and return of function in multiple sclerosis. FEBS Lett. 2011;585:3813–20.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

The author declares no conflicts of interest in preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ando, S. (2014). Glycoconjugate Changes in Aging and Age-Related Diseases. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_19

Download citation

Publish with us

Policies and ethics