Skip to main content

N-Glycosylation in Regulation of the Nervous System

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

Protein N-glycosylation can influence the nervous system in a variety of ways by affecting functions of glycoproteins involved in nervous system development and physiology. The importance of N-glycans for different aspects of neural development has been well documented. For example, some N-linked carbohydrate structures were found to play key roles in neural cell adhesion and axonal targeting during development. At the same time, the involvement of glycosylation in the regulation of neural physiology remains less understood. Recent studies have implicated N-glycosylation in the regulation of neural transmission, revealing novel roles of glycans in synaptic processes and the control of neural excitability. N-Glycans were found to markedly affect the function of several types of synaptic proteins involved in key steps of synaptic transmission, including neurotransmitter release, reception, and uptake. Glycosylation also regulates a number of channel proteins, such as TRP channels that control responses to environmental stimuli and voltage-gated ion channels, the principal determinants of neuronal excitability. Sialylated carbohydrate structures play a particularly prominent part in the modulation of voltage-gated ion channels. Sialic acids appear to affect channel functions via several mechanisms, including charge interactions, as well as other interactions that probably engage steric effects and interactions with other molecules. Experiments also indicated that some structural features of glycans can be particularly important for their function. Since glycan structures can vary significantly between different cell types and depend on the metabolic state of the cell, it is important to analyze glycan functions using in vivo approaches. While the complexity of the nervous system and intricacies of glycosylation pathways can create serious obstacles for in vivo experiments in vertebrates, recent studies have indicated that more simple and experimentally tractable model organisms like Drosophila should provide important advantages for elucidating evolutionarily conserved functions of N-glycosylation in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

β4GalNAcTA:

β1,4-N-acetylgalactosaminyltransferase A

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ASIC:

Acid-sensing ion channel

CDGs:

Congenital disorders of glycosylation

ConA:

Concanavalin A

CSAS:

CMP-sialic acid synthetase

DSiaT:

Drosophila sialyltransferase

GABA:

γ-Aminobutyric acid

GalNAc:

N-Acetylgalactosamine

GnTI:

N-Acetylglucosaminyltransferase I

iGluR:

Ionotropic glutamate receptor

LacNAc:

N-Acetyllactosamine

nAChR:

Nicotinic acetylcholine receptor

NCAM:

Neural cell adhesion molecule

NMDA:

N-Methyl-d-aspartate

NMJ:

Neuromuscular junction

Para:

Paralytic

PSA:

Polysialic acid

Sia:

Sialic acid(s)

SV2:

Synaptic vesicle protein 2

TRP:

Transient receptor potential

References

  • Abo T, Balch CM. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol. 1981;127(3):1024–9.

    CAS  PubMed  Google Scholar 

  • Abu-Qarn M, Eichler J, Sharon N. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol. 2008;18(5):544–50.

    CAS  PubMed  Google Scholar 

  • Ahrens J, Foadi N, Eberhardt A, Haeseler G, Dengler R, Leffler A, Muhlenhoff M, Gerardy-Schahn R, Leuwer M. Defective polysialylation and sialylation induce opposite effects on gating of the skeletal Na+ channel NaV1.4 in Chinese hamster ovary cells. Pharmacology. 2011;87(5–6):311–7.

    CAS  PubMed  Google Scholar 

  • Amano M, Galvan M, He J, Baum LG. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem. 2003;278(9):7469–75.

    CAS  PubMed  Google Scholar 

  • Angata K, Huckaby V, Ranscht B, Terskikh A, Marth JD, Fukuda M. Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol. 2007;27(19):6659–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antonopoulos A, North SJ, Haslam SM, Dell A. Glycosylation of mouse and human immune cells: insights emerging from N-glycomics analyses. Biochem Soc Trans. 2011;39(5):1334–40.

    CAS  PubMed  Google Scholar 

  • Aoki K, Perlman M, Lim JM, Cantu R, Wells L, Tiemeyer M. Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem. 2007;282(12):9127–42.

    CAS  PubMed  Google Scholar 

  • Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1999;1473(1):4–8.

    CAS  PubMed  Google Scholar 

  • Ariga T, Kohriyama T, Freddo L, Latov N, Saito M, Kon K, Ando S, Suzuki M, Hemling ME, Rinehart Jr KL, et al. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J Biol Chem. 1987;262(2):848–53.

    CAS  PubMed  Google Scholar 

  • Armstrong N, Sun Y, Chen GQ, Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature. 1998;395(6705):913–7.

    CAS  PubMed  Google Scholar 

  • Baas S, Sharrow M, Kotu V, Middleton M, Nguyen K, Flanagan-Steet H, Aoki K, Tiemeyer M. Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo. Development. 2011;138(3):553–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barros CS, Franco SJ, Muller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol. 2010;3(1):a005108.

    Google Scholar 

  • Baycin-Hizal D, Tian Y, Akan I, Jacobson E, Clark D, Chu J, Palter K, Zhang H, Betenbaugh MJ. GlycoFly: a database of Drosophila N-linked glycoproteins identified using SPEG–MS techniques. J Proteome Res. 2011;10(6):2777–84.

    CAS  PubMed  Google Scholar 

  • Bennett ES. Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: functional sialic acids are localized to the S5-S6 loop of domain I. J Physiol. 2002;538(3):675–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett E, Urcan MS, Tinkle SS, Koszowski AG, Levinson SR. Contribution of sialic acid to the voltage dependence of sodium channel gating: a possible electrostatic mechanism. J Gen Physiol. 1997;109(3):327–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boquet I, Hitier R, Dumas M, Chaminade M, Preat T. Central brain postembryonic development in Drosophila: implication of genes expressed at the interhemispheric junction. J Neurobiol. 2000;42(1):33–48.

    CAS  PubMed  Google Scholar 

  • Cai G, Salonikidis PS, Fei J, Schwarz W, Schulein R, Reutter W, Fan H. The role of N-glycosylation in the stability, trafficking and GABA-uptake of GABA-transporter 1. Terminal N-glycans facilitate efficient GABA-uptake activity of the GABA transporter. FEBS J. 2005;272(7):1625–38.

    CAS  PubMed  Google Scholar 

  • Castillo C, Diaz ME, Balbi D, Thornhill WB, Recio-Pinto E. Changes in sodium channel function during postnatal brain development reflect increases in the level of channel sialidation. Brain Res Dev Brain Res. 1997;104(1–2):119–30.

    CAS  PubMed  Google Scholar 

  • Castillo C, Thornhill WB, Zhu J, Recio-Pinto E. The permeation and activation properties of brain sodium channels change during development. Brain Res Dev Brain Res. 2003;144(1):99–106.

    CAS  PubMed  Google Scholar 

  • Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro OM, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A. 2008;105(28):9805–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang WP, Sudhof TC. SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J Neurosci. 2009;29(4):883–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang Q, Hoefs S, Van Der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310(5747):490–3.

    CAS  PubMed  Google Scholar 

  • Chen L. In pursuit of the high-resolution structure of nicotinic acetylcholine receptors. J Physiol. 2010;588(Pt 4):557–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen D, Dang H, Patrick JW. Contributions of N-linked glycosylation to the expression of a functional alpha7-nicotinic receptor in Xenopus oocytes. J Neurochem. 1998;70(1):349–57.

    CAS  PubMed  Google Scholar 

  • Chou DK, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB. Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J Biol Chem. 1986;261(25):11717–25.

    CAS  PubMed  Google Scholar 

  • Colley KJ. Structural basis for the polysialylation of the neural cell adhesion molecule. Adv Exp Med Biol. 2010;663:111–26.

    CAS  PubMed  Google Scholar 

  • Condon KH, Ho J, Robinson CG, Hanus C, Ehlers MD. The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation. J Neurosci. 2013;33(9):3799–814.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cotella D, Radicke S, Bortoluzzi A, Ravens U, Wettwer E, Santoro C, Sblattero D. Impaired glycosylation blocks DPP10 cell surface expression and alters the electrophysiology of Ito channel complex. Pflugers Arch. 2010;460(1):87–97.

    CAS  PubMed  Google Scholar 

  • Cronin NB, O'reilly A, Duclohier H, Wallace BA. Effects of deglycosylation of sodium channels on their structure and function. Biochemistry. 2005;44(2):441–9.

    CAS  PubMed  Google Scholar 

  • Dacosta CJ, Kaiser DE, Baenziger JE. Role of glycosylation and membrane environment in nicotinic acetylcholine receptor stability. Biophys J. 2005;88(3):1755–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dani N, Broadie K. Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev Neurobiol. 2012;72(1):2–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci. 2007;10(8):953–62.

    CAS  PubMed  Google Scholar 

  • Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell. 2009;139(7):1229–41.

    PubMed Central  PubMed  Google Scholar 

  • Dietrich A, Mederos Y, Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T. N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem. 2003;278(48):47842–52.

    CAS  PubMed  Google Scholar 

  • Dindot SV, Antalffy BA, Bhattacharjee MB, Beaud et al. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008;17(1):111–8.

    Google Scholar 

  • Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci. 2010;11(11):735–46.

    CAS  PubMed  Google Scholar 

  • Ednie AR, Bennett ES. Modulation of voltage-gated ion channels by sialylation. Compr Physiol. 2012;2(2):1269–301.

    PubMed  Google Scholar 

  • Elmer LW, O'brien BJ, Nutter TJ, Angelides KJ. Physicochemical characterization of the alpha-peptide of the sodium channel from rat brain. Biochemistry. 1985;24(27):8128–37.

    CAS  PubMed  Google Scholar 

  • Engel AG. Current status of the congenital myasthenic syndromes. Neuromuscul Disord. 2012;22(2):99–111.

    PubMed Central  PubMed  Google Scholar 

  • Everts I, Villmann C, Hollmann M. N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol Pharmacol. 1997;52(5):861–73.

    CAS  PubMed  Google Scholar 

  • Everts I, Petroski R, Kizelsztein P, Teichberg VI, Heinemann SF, Hollmann M. Lectin-induced inhibition of desensitization of the kainate receptor GluR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. J Neurosci. 1999;19(3):916–27.

    CAS  PubMed  Google Scholar 

  • Fay AM, Bowie D. Concanavalin-A reports agonist-induced conformational changes in the intact GluR6 kainate receptor. J Physiol. 2006;572(Pt 1):201–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeze HH, Eklund EA, Ng BG, Patterson MC. Neurology of inherited glycosylation disorders. Lancet Neurol. 2012;11(5):453–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gehle VM, Walcott EC, Nishizaki T, Sumikawa K. N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. Brain Res Mol Brain Res. 1997;45(2):219–29.

    CAS  PubMed  Google Scholar 

  • Gill MB, Vivithanaporn P, Swanson GT. Glutamate binding and conformational flexibility of ligand-binding domains are critical early determinants of efficient kainate receptor biogenesis. J Biol Chem. 2009;284(21):14503–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gong Q, Anderson CL, January CT, Zhou Z. Role of glycosylation in cell surface expression and stability of HERG potassium channels. Am J Physiol Heart Circ Physiol. 2002;283(1):H77–84.

    CAS  PubMed  Google Scholar 

  • Gottlieb C, Baenziger J, Kornfeld S. Deficient uridine diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. J Biol Chem. 1975;250(9):3303–9.

    CAS  PubMed  Google Scholar 

  • Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J, Greenberg ME. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140(5):704–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurba KN, Hernandez CC, Hu N, Macdonald RL. GABRB3 mutation, G32R, associated with childhood absence epilepsy alters alpha1beta3gamma2L gamma-aminobutyric acid type A (GABAA) receptor expression and channel gating. J Biol Chem. 2012;287(15):12083–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevicius K, Gureviciene I, Sivukhina E, Irintchev A, Schachner M, Tanila H. Increased hippocampal and cortical beta oscillations in mice deficient for the HNK-1 sulfotransferase. Mol Cell Neurosci. 2007;34(2):189–98.

    CAS  PubMed  Google Scholar 

  • Haines N, Irvine KD. Functional analysis of Drosophila beta1,4-N-acetlygalactosaminyltransferases. Glycobiology. 2005;15(4):335–46.

    CAS  PubMed  Google Scholar 

  • Haines N, Stewart BA. Functional roles for beta1,4-N-acetlygalactosaminyltransferase-A in Drosophila larval neurons and muscles. Genetics. 2007;175(2):671–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall MK, Reutter W, Lindhorst T, Schwalbe RA. Biochemical engineering of the N-acyl side chain of sialic acids alters the kinetics of a glycosylated potassium channel Kv3.1. FEBS Lett. 2011;585(20):3322–7.

    CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291(5512):2364–9.

    CAS  PubMed  Google Scholar 

  • Henion TR, Faden AA, Knott TK, Schwarting GA. beta3GnT2 maintains adenylyl cyclase-3 signaling and axon guidance molecule expression in the olfactory epithelium. J Neurosci. 2011;31(17):6576–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hildebrandt H, Muhlenhoff M, Oltmann-Norden I, Rockle I, Burkhardt H, Weinhold B, Gerardy-Schahn R. Imbalance of neural cell adhesion molecule and polysialyltransferase alleles causes defective brain connectivity. Brain. 2009;132(Pt 10):2831–8.

    PubMed  Google Scholar 

  • Hollmann M, Maron C, Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron. 1994;13(6):1331–43.

    CAS  PubMed  Google Scholar 

  • Hu J, Fei J, Reutter W, Fan H. Involvement of sialic acid in the regulation of gamma–aminobutyric acid uptake activity of gamma-aminobutyric acid transporter 1. Glycobiology. 2011;21(3):329–39.

    CAS  PubMed  Google Scholar 

  • Ioffe E, Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A. 1994;91(2):728–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isaev D, Isaeva E, Shatskih T, Zhao Q, Smits NC, Shworak NW, Khazipov R, Holmes GL. Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus. J Neurosci. 2007;27(43):11587–94.

    CAS  PubMed  Google Scholar 

  • Isaev D, Zhao Q, Kleen JK, Lenck-Santini PP, Adstamongkonkul D, Isaeva E, Holmes GL. Neuroaminidase reduces interictal spikes in a rat temporal lobe epilepsy model. Epilepsia. 2011;52(3):e12–5.

    PubMed Central  PubMed  Google Scholar 

  • Isaeva E, Lushnikova I, Savrasova A, Skibo G, Holmes GL, Isaev D. Blockade of endogenous neuraminidase leads to an increase of neuronal excitability and activity-dependent synaptogenesis in the rat hippocampus. Eur J Neurosci. 2010;32(11):1889–96.

    PubMed  Google Scholar 

  • Islam R, Nakamura M, Scott H, Repnikova E, Carnahan M, Pandey D, Caster C, Khan S, Zimmermann T, Zoran MJ, Panin VM. The role of Drosophila cytidine monophosphate-sialic acid synthetase in the nervous system. J Neurosci. 2013;33(30):12306–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  • James WM, Agnew WS. Multiple oligosaccharide chains in the voltage-sensitive Na channel from electrophorus electricus: evidence for alpha-2,8-linked polysialic acid. Biochem Biophys Res Commun. 1987;148(2):817–26.

    CAS  PubMed  Google Scholar 

  • Janz R, Goda Y, Geppert M, Missler M, Sudhof TC. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron. 1999;24(4):1003–16.

    CAS  PubMed  Google Scholar 

  • Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaud et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21(4):799–811.

    Google Scholar 

  • Jing L, Chu XP, Jiang YQ, Collier DM, Wang B, Jiang Q, Snyder PM, Zha XM. N-glycosylation of acid-sensing ion channel 1a regulates its trafficking and acidosis-induced spine remodeling. J Neurosci. 2012;32(12):4080–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson D, Bennett ES. Isoform-specific effects of the beta(2) subunit on voltage-gated sodium channel gating. J Biol Chem. 2006;281(36):25875–81.

    CAS  PubMed  Google Scholar 

  • Johnson D, Montpetit ML, Stocker PJ, Bennett ES. The sialic acid component of the beta(1) subunit modulates voltage-gated sodium channel function. J Biol Chem. 2004;279(43):44303–10.

    CAS  PubMed  Google Scholar 

  • Kadurin I, Golubovic A, Leisle L, Schindelin H, Grunder S. Differential effects of N-glycans on surface expression suggest structural differences between the acid-sensing ion channel (ASIC) 1a and ASIC1b. Biochem J. 2008;412(3):469–75.

    CAS  PubMed  Google Scholar 

  • Kariya Y, Kato R, Itoh S, Fukuda T, Shibukawa Y, Sanzen N, Sekiguchi K, Wada Y, Kawasaki N, Gu J. N-Glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc. J Biol Chem. 2008;283(48):33036–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci. 2004;5(3):195–208.

    CAS  PubMed  Google Scholar 

  • Koles K, Irvine KD, Panin VM. Functional characterization of Drosophila sialyltransferase. J Biol Chem. 2004;279(6):4346–57.

    CAS  PubMed  Google Scholar 

  • Koles K, Lim JM, Aoki K, Porterfield M, Tiemeyer M, Wells L, Panin V. Identification of N-glycosylated proteins from the central nervous system of Drosophila melanogaster. Glycobiology. 2007;17(12):1388–403.

    CAS  PubMed  Google Scholar 

  • Koles K, Repnikova E, Pavlova G, Korochkin LI, Panin VM. Sialylation in protostomes: a perspective from Drosophila genetics and biochemistry. Glycoconj J. 2009;26(3):313–24.

    CAS  PubMed  Google Scholar 

  • Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, Stromgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63(3):585–640.

    CAS  PubMed  Google Scholar 

  • Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles. J Biol Chem. 2012;287(42):35658–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leonard R, Rendic D, Rabouille C, Wilson IB, Preat T, Altmann F. The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem. 2006;281(8):4867–75.

    CAS  PubMed  Google Scholar 

  • Leunissen EH, Nair AV, Bull C, Lefeber DJ, Van Delft FL, Bindels RJ, Hoenderop JG. The epithelial calcium channel TRPV5 is regulated differentially by klotho and sialidase. J Biol Chem. 2013;288:29238–46.

    CAS  PubMed  Google Scholar 

  • Li LB, Chen N, Ramamoorthy S, Chi L, Cui XN, Wang LC, Reith ME. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J Biol Chem. 2004;279(20):21012–20.

    CAS  PubMed  Google Scholar 

  • Lowe JB, Marth JD. A genetic approach to Mammalian glycan function. Annu Rev Biochem. 2003;72:643–91.

    CAS  PubMed  Google Scholar 

  • Mah SJ, Cornell E, Mitchell NA, Fleck MW. Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function. J Neurosci. 2005;25(9):2215–25.

    CAS  PubMed  Google Scholar 

  • Martinez-Maza R, Poyatos I, Lopez-Corcuera B, Núñez E, Gimenez C, Zafra F, Aragon C. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem. 2001;276(3):2168–73.

    CAS  PubMed  Google Scholar 

  • Mckemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416(6876):52–8.

    CAS  PubMed  Google Scholar 

  • Melikian HE, Ramamoorthy S, Tate CG, Blakely RD. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol Pharmacol. 1996;50(2):266–76.

    CAS  PubMed  Google Scholar 

  • Messner DJ, Catterall WA. The sodium channel from rat brain. Separation and characterization of subunits. J Biol Chem. 1985;260(19):10597–604.

    CAS  PubMed  Google Scholar 

  • Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J. 1994;13(9):2056–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JA, Agnew WS, Levinson SR. Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry. 1983;22(2):462–70.

    CAS  PubMed  Google Scholar 

  • Miwa JM, Freedman R, Lester HA. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron. 2011;70(1):20–33.

    CAS  PubMed  Google Scholar 

  • Montpetit ML, Stocker PJ, Schwetz TA, Harper JM, Norring SA, Schaffer L, North SJ, Jang-Lee J, Gilmartin T, Head SR, Haslam SM, Dell A, Marth JD, Bennett ES. Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proc Natl Acad Sci U S A. 2009;106(38):16517–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13(7):448–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morita I, Kakuda S, Takeuchi Y, Itoh S, Kawasaki N, Kizuka Y, Kawasaki T, Oka S. HNK-1 glyco-epitope regulates the stability of the glutamate receptor subunit GluR2 on the neuronal cell surface. J Biol Chem. 2009;284(44):30209–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muhlenhoff M, Eckhardt M, Gerardy-Schahn R. Polysialic acid: three-dimensional structure, biosynthesis and function. Curr Opin Struct Biol. 1998;8(5):558–64.

    CAS  PubMed  Google Scholar 

  • Muhlenhoff M, Oltmann-Norden I, Weinhold B, Hildebrandt H, Gerardy-Schahn R. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biol Chem. 2009;390(7):567–74.

    PubMed  Google Scholar 

  • Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ. PSA-NCAM is required for activity-induced synaptic plasticity. Neuron. 1996;17(3):413–22.

    CAS  PubMed  Google Scholar 

  • Nakamura M, Pandey D, Panin VM. Genetic interactions between Drosophila sialyltransferase and beta1,4-N-acetylgalactosaminyltransferase-a genes indicate their involvement in the same pathway. G3 (Bethesda). 2012;2(6):653–6.

    CAS  PubMed Central  Google Scholar 

  • Nanao MH, Green T, Stern-Bach Y, Heinemann SF, Choe S. Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc Natl Acad Sci U S A. 2005;102(5):1708–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen TT, Amara SG. N-linked oligosaccharides are required for cell surface expression of the norepinephrine transporter but do not influence substrate or inhibitor recognition. J Neurochem. 1996;67(2):645–55.

    CAS  PubMed  Google Scholar 

  • Nishizaki T. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. Brain Res Mol Brain Res. 2003;114(2):172–6.

    CAS  PubMed  Google Scholar 

  • North SJ, Koles K, Hembd C, Morris HR, Dell A, Panin VM, Haslam SM. Glycomic studies of Drosophila melanogaster embryos. Glycoconj J. 2006;23(5–6):345–54.

    CAS  PubMed  Google Scholar 

  • Olivares L, Aragon C, Gimenez C, Zafra F. The role of N-glycosylation in the targeting and activity of the GLYT1 glycine transporter. J Biol Chem. 1995;270(16):9437–42.

    CAS  PubMed  Google Scholar 

  • Parkinson W, Dear ML, Rushton E, Broadie K. N-glycosylation requirements in neuromuscular synaptogenesis. Development. 2013;140(24):4970–81.

    CAS  PubMed  Google Scholar 

  • Partin KM, Patneau DK, Winters CA, Mayer ML, Buonanno A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron. 1993;11(6):1069–82.

    CAS  PubMed  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, Mcintyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108(5):705–15.

    CAS  PubMed  Google Scholar 

  • Pertusa M, Madrid R, Morenilla-Palao C, Belmonte C, Viana F. N-glycosylation of TRPM8 ion channels modulates temperature sensitivity of cold thermoreceptor neurons. J Biol Chem. 2012;287(22):18218–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen TN, Plenge P, Bay T, Egebjerg J, Gether U. A single nucleotide polymorphism in the human serotonin transporter introduces a new site for N-linked glycosylation. Neuropharmacology. 2009;57(3):287–94.

    CAS  PubMed  Google Scholar 

  • Recio-Pinto E, Thornhill WB, Duch DS, Levinson SR, Urban BW. Neuraminidase treatment modifies the function of electroplax sodium channels in planar lipid bilayers. Neuron. 1990;5(5):675–84.

    CAS  PubMed  Google Scholar 

  • Repnikova E, Koles K, Nakamura M, Pitts J, Li H, Ambavane A, Zoran MJ, Panin VM. Sialyltransferase regulates nervous system function in Drosophila. J Neurosci. 2010;30(18):6466–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts RH, Barchi RL. The voltage-sensitive sodium channel from rabbit skeletal muscle. Chemical characterization of subunits. J Biol Chem. 1987;262(5):2298–303.

    CAS  PubMed  Google Scholar 

  • Rutishauser U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci. 2008;9(1):26–35.

    CAS  PubMed  Google Scholar 

  • Sarkar M, Leventis PA, Silvescu CI, Reinhold VN, Schachter H, Boulianne GL. Null mutations in Drosophila N-acetylglucosaminyltransferase I produce defects in locomotion and a reduced life span. J Biol Chem. 2006;281(18):12776–85.

    CAS  PubMed  Google Scholar 

  • Sarkar M, Iliadi KG, Leventis PA, Schachter H, Boulianne GL. Neuronal expression of Mgat1 rescues the shortened life span of Drosophila Mgat11 null mutants and increases life span. Proc Natl Acad Sci U S A. 2010;107(21):9677–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schachter H. Mgat1-dependent N-glycans are essential for the normal development of both vertebrate and invertebrate metazoans. Semin Cell Dev Biol. 2010;21(6):609–15.

    CAS  PubMed  Google Scholar 

  • Schwalbe RA, Corey MJ, Cartwright TA. Novel Kv3 glycoforms differentially expressed in adult mammalian brain contain sialylated N-glycans. Biochem Cell Biol. 2008;86(1):21–30.

    CAS  PubMed  Google Scholar 

  • Schwetz TA, Norring SA, Bennett ES. N-glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating. Biochim Biophys Acta. 2010;1798(3):367–75.

    CAS  PubMed  Google Scholar 

  • Sekine SU, Haraguchi S, Chao K, Kato T, Luo L, Miura M, Chihara T. Meigo governs dendrite targeting specificity by modulating ephrin level and N-glycosylation. Nat Neurosci. 2013;16(6):683–91.

    CAS  PubMed  Google Scholar 

  • Senderek J, Muller JS, Dusl M, Strom TM, Guergueltcheva V, Diepolder I, Laval SH, Maxwell S, Cossins J, Krause S, Muelas N, Vilchez JJ, Colomer J, Mallebrera CJ, Nascimento A, Nafissi S, Kariminejad A, Nilipour Y, Bozorgmehr B, Najmabadi H, Rodolico C, Sieb JP, Steinlein OK, Schlotter B, Schoser B, Kirschner J, Herrmann R, Voit T, Oldfors A, Lindbergh C, Urtizberea A, Von Der Hagen M, Hubner A, Palace J, Bushby K, Straub V, Beeson D, Abicht A, Lochmuller H. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet. 2011;88(2):162–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Senn C, Kutsche M, Saghatelyan A, Bosl MR, Lohler J, Bartsch U, Morellini F, Schachner M. Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol Cell Neurosci. 2002;20(4):712–29.

    CAS  PubMed  Google Scholar 

  • Sharon N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem. 2007;282(5):2753–64.

    CAS  PubMed  Google Scholar 

  • Stanley P, Narasimhan S, Siminovitch L, Schachter H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine–glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci U S A. 1975;72(9):3323–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P, Schachter H, Taniguchi N. N-Glycans. In: Varki A, Cummings RD, et al., editors. Essentials of glycobiology. Harbor, NY: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  • Stocker PJ, Bennett ES. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium. J Gen Physiol. 2006;127(3):253–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sumikawa K, Parker I, Miledi R. Effect of tunicamycin on the expression of functional brain neurotransmitter receptors and voltage-operated channels in Xenopus oocytes. Brain Res. 1988;464(3):191–9.

    CAS  PubMed  Google Scholar 

  • Tan CL, Kwok JC, Patani R, Ffrench-Constant C, Chandran S, Fawcett JW. Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. J Neurosci. 2011;31(17):6289–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tate CG, Blakely RD. The effect of N-linked glycosylation on activity of the Na(+)- and Cl(-)-dependent serotonin transporter expressed using recombinant baculovirus in insect cells. J Biol Chem. 1994;269(42):26303–10.

    CAS  PubMed  Google Scholar 

  • Thio LL, Clifford DB, Zorumski CF. Concanavalin A enhances excitatory synaptic transmission in cultured rat hippocampal neurons. Synapse. 1993;13(1):94–7.

    CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, Mcbain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tyrrell L, Renganathan M, Dib-Hajj SD, Waxman SG. Glycosylation alters steady-state inactivation of sodium channel Nav1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. J Neurosci. 2001;21(24):9629–37.

    CAS  PubMed  Google Scholar 

  • Ufret-Vincenty CA, Baro DJ, Lederer WJ, Rockman HA, Quinones LE, Santana LF. Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J Biol Chem. 2001;276(30):28197–203.

    CAS  PubMed  Google Scholar 

  • Vandenborre G, Van Damme EJ, Ghesquiere B, Menschaert G, Hamshou M, Rao RN, Gevaert K, Smagghe G. Glycosylation signatures in Drosophila: fishing with lectins. J Proteome Res. 2010;9(6):3235–42.

    CAS  PubMed  Google Scholar 

  • Varki A, Etzler ME, Cummings RD, Esko JD. Discovery and classification of glycan-binding proteins. In: Varki A, Cummings RD, et al., editors. Essentials of glycobiology. Harbor, NY: Cold Spring; 2009.

    Google Scholar 

  • Veldhuis NA, Lew MJ, Abogadie FC, Poole DP, Jennings EA, Ivanusic JJ, Eilers H, Bunnett NW, Mcintyre P. N-glycosylation determines ionic permeability and desensitization of the TRPV1 capsaicin receptor. J Biol Chem. 2012;287(26):21765–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang PS, Wang J, Xiao ZC, Pallen CJ. Protein-tyrosine phosphatase alpha acts as an upstream regulator of Fyn signaling to promote oligodendrocyte differentiation and myelination. J Biol Chem. 2009;284(48):33692–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe I, Wang HG, Sutachan JJ, Zhu J, Recio-Pinto E, Thornhill WB. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism. J Physiol. 2003;550(1):51–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe I, Zhu J, Recio-Pinto E, Thornhill WB. Glycosylation affects the protein stability and cell surface expression of Kv1.4 but Not Kv1.1 potassium channels. A pore region determinant dictates the effect of glycosylation on trafficking. J Biol Chem. 2004;279(10):8879–85.

    Google Scholar 

  • Watanabe I, Zhu J, Sutachan JJ, Gottschalk A, Recio-Pinto E, Thornhill WB. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials. Brain Res. 2007;1144:1–18.

    CAS  PubMed  Google Scholar 

  • Weinhold B, Seidenfaden R, Rockle I, Muhlenhoff M, Schertzinger F, Conzelmann S, Marth JD, Gerardy-Schahn R, Hildebrandt H. Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem. 2005;280(52):42971–7.

    CAS  PubMed  Google Scholar 

  • Weiss N, Black SA, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch. 2013;465(8):1159–70.

    CAS  PubMed  Google Scholar 

  • Williams CA, Beaud et al, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, Magenis RE, Moncla A, Schinzel AA, Summers JA, Wagstaff J. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140(5):413–8.

    Google Scholar 

  • Wirkner K, Hognestad H, Jahnel R, Hucho F, Illes P. Characterization of rat transient receptor potential vanilloid 1 receptors lacking the N-glycosylation site N604. Neuroreport. 2005;16(9):997–1001.

    CAS  PubMed  Google Scholar 

  • Wittwer AJ, Howard SC. Glycosylation at Asn-184 inhibits the conversion of single-chain to two-chain tissue-type plasminogen activator by plasmin. Biochemistry. 1990;29(17):4175–80.

    CAS  PubMed  Google Scholar 

  • Woodard-Grice AV, Mcbrayer AC, Wakefield JK, Zhuo Y, Bellis SL. Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of alpha4beta1 integrins. J Biol Chem. 2008;283(39):26364–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wormald MR, Dwek RA. Glycoproteins: glycan presentation and protein-fold stability. Structure. 1999;7(7):R155–60.

    CAS  PubMed  Google Scholar 

  • Xu H, Fu Y, Tian W, Cohen DM. Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol. 2006;290(5):F1103–9.

    CAS  PubMed  Google Scholar 

  • Yagi H, Yanagisawa M, Suzuki Y, Nakatani Y, Ariga T, Kato K, Yu RK. HNK-1 epitope-carrying tenascin-C spliced variant regulates the proliferation of mouse embryonic neural stem cells. J Biol Chem. 2010;285(48):37293–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi H, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T. Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem. 2002;277(30):27227–31.

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Yu RK. The expression and functions of glycoconjugates in neural stem cells. Glycobiology. 2007;17(7):57R–74.

    CAS  PubMed  Google Scholar 

  • Yashiro K, Riday TT, Condon KH, Roberts AC, Bernardo DR, Prakash R, Weinberg RJ, Ehlers MD, Philpot BD. Ube3a is required for experience-dependent maturation of the neocortex. Nat Neurosci. 2009;12(6):777–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ye Z, Marth JD. N-glycan branching requirement in neuronal and postnatal viability. Glycobiology. 2004;14(6):547–58.

    CAS  PubMed  Google Scholar 

  • Yoshihara T, Sugihara K, Kizuka Y, Oka S, Asano M. Learning/memory impairment and reduced expression of the HNK-1 carbohydrate in beta4-galactosyltransferase-II-deficient mice. J Biol Chem. 2009;284(18):12550–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yue KT, Macdonald JF, Pekhletski R, Hampson DR. Differential effects of lectins on recombinant glutamate receptors. Eur J Pharmacol. 1995;291(3):229–35.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Hartmann HA, Satin J. Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol. 1999;171(3):195–207.

    CAS  PubMed  Google Scholar 

  • Zhao Y, Nakagawa T, Itoh S, Inamori K, Isaji T, Kariya Y, Kondo A, Miyoshi E, Miyazaki K, Kawasaki N, Taniguchi N, Gu J. N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J Biol Chem. 2006;281(43):32122–30.

    CAS  PubMed  Google Scholar 

  • Zhou D, Dinter A, Gutierrez Gallego R, Kamerling JP, Vliegenthart JF, Berger EG, Hennet T. A beta-1,3-N-acetylglucosaminyltransferase with poly-N-acetyllactosamine synthase activity is structurally related to beta-1,3-galactosyltransferases. Proc Natl Acad Sci U S A. 1999;96(2):406–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Yan J, Thornhill WB. N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels. FEBS J. 2012;279(15):2632–44.

    CAS  PubMed  Google Scholar 

  • Zhuo Y, Bellis SL. Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem. 2011;286(8):5935–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber C, Lackie PM, Catterall WA, Roth J. Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J Biol Chem. 1992;267(14):9965–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Mark Zoran for stimulating discussions, Dr. Linda Baum and Dr. Mark Lehrman for their inspiration to review the topics discussed in the paper; Dr. Daria Panina for comments on the manuscript. We thank all members of the Panin laboratory for helpful discussions. This work was supported in part by NIH grant NS075534 to V.M.P.

Ethical and Biosafety Standards Policy: Research experiments in the Panin laboratory have been approved by the Institutional Biosafety Committee of Texas A&M University (Permit IBC2013-053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav M. Panin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scott, H., Panin, V.M. (2014). N-Glycosylation in Regulation of the Nervous System. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_17

Download citation

Publish with us

Policies and ethics