Skip to main content

Right Ventricle in Structural and Functional Left Heart Failure in Children

  • Chapter
  • First Online:
The Right Ventricle in Health and Disease

Part of the book series: Respiratory Medicine ((RM))

  • 1996 Accesses

Abstract

In this chapter we describe the role of the right ventricle in structural and functional left ventricular failure in children. The ventriculo-ventricular interaction of the sub-pulmonary and sub-aortic ventricle is discussed in the context of (1) the right ventricle in left heart failure with decreased ejection fraction, (2) the right ventricle in restrictive cardiomyopathy or a borderline left ventricle and heart failure with preserved ejection fraction.

Novel therapeutic strategies are presented: pulmonary artery banding in dilated cardiomyopathy in young children, hybrid approaches combining atrioseptostomy and reverse Potts-shunt in patients with borderline left ventricle and right ventricular failure as well as atrioseptostomy in out-of-proportion left atrial pressure to improve the function of restrictive cardiomyopathy or left ventricular diastolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz K, Singh S, Dawson D, Frenneaux MP. Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circ. 2013;12:172–8.

    Google Scholar 

  2. Dickstein M, Todaka K, Burkhoff D. Left-to-right systolic and diastolic ventricular interactions are dependent on right ventricular volume. Am J Physiol Heart Circ Physiol. 1997;272: H2869–74.

    CAS  Google Scholar 

  3. Sanchez-Quintana D, Anderson RH, Ho SY. Ventricular myoarchitecture in tetralogy of Fallot. Heart. 1996;76:280–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Damiano Jr R, La Follette Jr P, Cox J, Lowe J, Santamore W. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol Heart Circ Physiol. 1991;261:H1514–24.

    Google Scholar 

  5. Redington AN. Pathophysiology of right ventricular failure. Seminars in thoracic and cardiovascular surgery. Pediatr Card Surg Ann. 2006;9:3–10.

    Google Scholar 

  6. Groner A, Yau J, Lytrivi ID, Ko HH, Nielsen JC, Parness IA, Srivastava S. The role of right ventricular function in pediatric idiopathic dilated cardiomyopathy. Cardiol Young. 2013; 23(3):409–15.

    Article  PubMed  Google Scholar 

  7. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126:975–90.

    Article  PubMed  Google Scholar 

  8. Berger G, Hardak E, Obaid W, Shaham B, Carasso S, Kerner A, Yigla M, Azzam ZS. Characterization of pulmonary venous hypertension patients with reactive pulmonary hypertension as compared to proportional pulmonary hypertension. Respiration. 2012;83:494–8.

    Article  PubMed  Google Scholar 

  9. Adir Y, Humbert M, Sitbon O, Wolf R, Lador F, Jaïs X, Simonneau G, Amir O. Out-of-proportion pulmonary hypertension and heart failure with preserved ejection function. Respiration. 2012;9:1–7.

    Google Scholar 

  10. Bonnet D, Humpel T. Out of proportion pulmonary hypertension and other forms of the disease. In: Beghetti M, Barst RJ, Berger RMF, Humpel T, Ivy D, Schulze-Neick I, editors. Pediatric pulmonary hypertension, Chap 16. Amsterdam: Elsevier. 2011.

    Google Scholar 

  11. Schranz D, Veldman A, Bartram U, Michel-Behnke I, Bauer J, Akintürk H. Pulmonary artery banding for idiopathic dilative cardiomyopathy: a novel therapeutic strategy using an old surgical procedure. J Thorac Cardiovasc Surg. 2007;134:796–7.

    Article  PubMed  Google Scholar 

  12. Schranz D, Rupp S, Muller M, et al. Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant. 2013;32:475–81.

    Article  PubMed  Google Scholar 

  13. Latus H, Apitz C, Schmidt D, Jux C, Müller M, Bauer J, Akintuerk H, Schneider M, Schranz D. Potts shunt and atrial septostomy in pulmonary hypertension due to left ventricular disease. Ann Thorac Surg. 2013;96(1):317–9.

    Article  PubMed  Google Scholar 

  14. Recla S, Steinbrenner B, Schreier J, Fichtlscherer S, Schmidt D, Apitz C, Müller M, Bauer J, Akintuerk H, Schranz D. Surgical-interventional hybrid orchestra consisting of Potts shunt, transcatheter tricuspid valve repair by Edwards-valve in a 26-years old patient with suprasystemic pulmonary hypertension and right ventricular failure. WJCD. 2031;3:1–4.

    Article  Google Scholar 

  15. Lipshultz SE, Sleeper LA, Towbin JA, Lowe AM, Orav EJ, Cox GF, Lurie PR, McCoy KL, McDonald MA, Messare JE, Colan SD. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348:1647–55.

    Article  PubMed  Google Scholar 

  16. Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet. 2010;375(9716):752–62.

    Article  PubMed  Google Scholar 

  17. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011;364: 1643–56.

    Article  PubMed  CAS  Google Scholar 

  18. Sanbe A. Dilated cardiomyopathy: a disease of the myocardium. Biol Pharm Bull. 2013; 36(1):18–22.

    Article  PubMed  CAS  Google Scholar 

  19. Bonnet D, Humpel T. Out of proportion pulmonary hypertension and other forms of the disease. In: Beghetti M, Barst RJ, Berger RMF, Humpel T, Ivy D, Schulze-Neick I, editors. Pediatric pulmonary hypertension, Chap 16. Amsterdam: Elsevier.

    Google Scholar 

  20. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, Messere J, Cox GF, Lurie PR, Hsu D, Canter C, Wilkinson JD, Lipshultz SE. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867–76.

    Article  PubMed  CAS  Google Scholar 

  21. Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, Davis AM, Kahler SG, Chow CW, Wilkinson JL. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348:1639–46.

    Article  PubMed  Google Scholar 

  22. Canter CE, Shaddy RE, Bernstein D, Hsu DT, Chrisant MR, Kirklin JK, Kanter KR, Higgins RS, Blume ED, Rosenthal DN, Boucek MM, Uzark KC, Friedman AH, Young JK. Indications for heart transplantation in pediatric heart disease: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young; the Councils on Clinical Cardiology, Cardiovascular Nursing, and Cardiovascular Surgery and Anesthesia; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007;115:658–76.

    Article  PubMed  Google Scholar 

  23. Alvarez JA, Orav EJ, Wilkinson JD, Fleming LE, Lee DJ, Sleeper GF, Rusconi PG, Colan SD, Hsu DT, Canter CE, Webber SA, Cox GF, Jefferies JL, Towbin JA, Lipschütz SE. Pediatric cardiomyopathy Registry Investigators. Circulation. 2011;124:814–23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oyama S, Sakuma M, Komaki K, Ishigaki H, Nakagawa M, Hozawa H, Yamamoto Y, Kagaya Y, Watanabe J, Shirato K. Right ventricular systolic function and the manner of transformation of the right ventricle in patients with dilated cardiomyopathy. Circ J. 2004;68(10):933–7.

    Article  PubMed  Google Scholar 

  25. Meyer P, Filippatos GS, Ahmed MI, Iskandrian AE, Bittner V, Perry GJ, White M, Aban IB, Mujib M, Dell’Italia LJ, Ahmed A. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation. 2010;121:252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kaufman BD, Shaddy RE, Shirali GS, Tanel R, Towbin JA. Assessment and management of the failing heart in children. Cardiol Young. 2008;18 Suppl 3:63–71.

    Article  PubMed  Google Scholar 

  27. Daubeney PEF, Nugent AW, Chondros P, Carlin JB, Colan SD, Cheung M, Davis AM, Chow CW, Weintraub RG. Clinical features and outcomes of childhood dilated cardiomyopathy. Results from a national Population-Based Study. Circ. 2006;114:2671–8.

    Article  Google Scholar 

  28. Singh TP, Sleeper LA, Lipshultz S, Cinar A, Canter C, Webber SA, Bernstein D, Pahl E, Alvarez JA, Wilkinson JD, Towbin JA, Colan SD. Association of left ventricular dilation at listing for heart transplant with postlisting and early posttransplant mortality in children with dilated cardiomyopathy. Circ Heart Fail. 2009;2:591–59813.

    Article  PubMed  CAS  Google Scholar 

  29. Kirk R, Edwards LB, Aurora P, Taylor DO, Christie J, Dobbels F, Kucheryavaya AY, Rahmel AO, Hertz MI. Registry of the International Society for Heart and Lung Transplantation: eleventh official pediatric heart transplantation report—2008. J Heart Lung Transplant. 2008;27:970–7.

    Article  PubMed  Google Scholar 

  30. Hauser J, Michel-Behnke I, Khazen C, Laufer G, Pees C. Successful cardiac resynchronization therapy in a 1.5-year-old girl with dilated cardiomyopathy and functional mitral regurgitation. Int J Cardiol. 2013;167:e83–4.

    Article  PubMed  Google Scholar 

  31. Rupp S, Jux C, Bönig H, Bauer J, Tonn T, Seifried E, Dimmeler S, Zeiher AM, Schranz D. Intracoronary bone marrow cell application for terminal heart failure in children. Cardiol Young. 2012;22(5):558–63.

    Article  PubMed  Google Scholar 

  32. Graham Jr TP, Bernard YD, Mellen BG, Celermajer D, Baumgartner H, Cetta F, Connolly HM, Davidson WR, Dellborg M, Foster E, Gersony WM, Gessner IH, Hurwitz RA, Kaemmerer H, Kugler JD, Murphy DJ, Noonan JA, Morris C, Perloff JK, Sanders SP, Sutherland JL. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36(1):255–61.

    Article  PubMed  Google Scholar 

  33. Muller WH, Dammann JF. The treatment of certain congenital malformations of the heart by the creation of pulmonic stenosis to reduce pulmonary hypertension and excessive pulmonary blood flow: a preliminary report. Surg Gynecol Obstet. 1952;95:213.

    PubMed  Google Scholar 

  34. Winlaw DS, McGuirk SP, Balmer C, Langley SM, Griselli M, Stümper O, De Giovanni JV, Wright JG, Thorne S, Barron DJ, Brawn WJ. Intention-to-treat analysis of pulmonary artery banding in conditions with a morphological right ventricle in the systemic circulation with a view to anatomic biventricular repair. Circulation. 2005;111:405–11.

    Article  PubMed  Google Scholar 

  35. Murtuza B, Barron DJ, Stumper O, Stickley J, Eaton S, Jones TJ, Brawn WJ. Anatomic repair for congenitally corrected transposition of the great arteries: a single-institution 19-year experience. J Thorac Cardiovasc Surg. 2011;142:1348–57.

    Article  PubMed  Google Scholar 

  36. Metton O, Gaudin R, Ou P, Geelli S, Mussa S, Sidi D, Vouhe P, Raisky O. Early prophylactic pulmonary artery banding in isolated congenitally corrected transposition of the great arteries. Eur J Cardiothorac Surg. 2010;38:728–34.

    Article  PubMed  Google Scholar 

  37. Bailey LL. Back to the future! Bold new indication for pulmonary artery banding. J Heart Lung Transplant. 2013;32:482–3.

    Article  PubMed  Google Scholar 

  38. Amir G, Ma X, Reddy VM, et al. Dynamics of human myocardial progenitor cell populations in the neonatal period. Ann Thorac Surg. 2008;86:1311–9.

    Article  PubMed  Google Scholar 

  39. Mishra R, Vijayan K, Colletti EJ, et al. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation. 2011;123:364–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Rupp S, Bauer J, von Gerlach S, Fichtlscherer S, Zeiher AM, Dimmeler S, Schranz D. Pressure overload leads to an increase of cardiac resident stem cells. Basic Res Cardiol. 2012;107(2):252.

    Article  PubMed  Google Scholar 

  41. Mollovaa M, Bersella K, Walsha S, Savlaa S, Tanmoy Dasa L, Park S-Y, Silbersteine SL, dos Remediosg DG, Grahama D, Colana D, Kühn B. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110:1446–51.

    Article  Google Scholar 

  42. Baicu CF, et al. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing. Am J Physiol Heart Circ Physiol. 2012;303(9):H1128–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Grosse-Kreimburg K, Uchida S, Gellert P, Schneider A, Boettger T, Voswinckel R, Wietelmann A, Szibor M, Weissmann N, Ghofrani AH, Schermuly R, Schranz D, Seeger W, Braun T. Identification of right heart-enriched genes in a murine model of chronic outflow tract obstruction. J Mol Cell Cardiol. 2010;49(4):598–605.

    Article  Google Scholar 

  44. Takeda N, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120(1):254–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Bogaard HJ, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.

    Article  PubMed  Google Scholar 

  46. Roncon-Albuquerque Jr R, Vasconcelos M, Lourenco AP, et al. Acute changes of biventricular gene expression in volume and right ventricular pressure overload. Life Sci. 2006;78:2633–42.

    Article  PubMed  CAS  Google Scholar 

  47. Nihoyannopoulos P, Dawson D. Restrictive cardiomyopathies. Eur J Echocardiogr. 2009;10(8):23–33.

    Article  Google Scholar 

  48. Corno AF. Borderline left ventricle. Eur J Cardiothorac Surg. 2005;27(1):67–73.

    Article  PubMed  Google Scholar 

  49. Hamdani N, Paulus WJ. Myocardial titin and collagen in cardiac diastolic dysfunction: partners in crime! Circulation. 2013;128:5–8.

    Article  PubMed  Google Scholar 

  50. Kearney DL. The pathological spectrum of left-ventricular hypoplasia. Semin Cardiothorac Vasc Anesth. 2013;17(2):105–16.

    Article  PubMed  Google Scholar 

  51. Seki A, Patel S, Ashraf S, Perens G, Fishbein MC. Primary endocardial fibroelastosis: an underappreciated cause of cardiomyopathy in children. Cardiovasc Pathol. 2013;22:345–50.

    Article  PubMed  Google Scholar 

  52. Grosse-Wortmann L, Yun TJ, Al-Radi O, Kim S, Nii M, Lee KJ, Redington A, Yoo SJ, van Arsdell G. Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg. 2008;136(6):1429–36.

    Article  PubMed  Google Scholar 

  53. Emani SM, McElhinney DB, Tworetzky W, Myers PO, Schroeder B, Zurakowski D, Pigula FA, Marx GR, Lock JE, Del Nido PJ. Staged left ventricular recruitment after single-ventricle palliation in patients with borderline left heart hypoplasia. J Am Coll Cardiol. 2012;60:1966–74.

    Article  PubMed  Google Scholar 

  54. Michel-Behnke I, Akintuerk H, Marquardt I, Mueller M, Thul J, Bauer J, Hagel KJ, Kreuder J, Vogt P, Schranz D. Stenting of the ductus arteriosus and banding of the pulmonary arteries: basis for various surgical strategies in newborns with multiple left heart obstructive lesions. Heart. 2003;89(6):645–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Davis CK, Pastuszko P, Lamberti J, Moore J, Hanley F, El Said H. The hybrid procedure for the borderline left ventricle. Cardiol Young. 2011;21(1):26–30.

    Article  PubMed  Google Scholar 

  56. Webber SA, Lipshultz SE, Sleeper LA, Lu M, Wilkinson JD, Addonizio LJ, Canter CE, Colan SD, Everitt MD, Jefferies JL, Kantor PF, Lamour JM, Margossian R, Pahl E, Rusconi PG, Towbin JA. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Pediatric Cardiomyopathy Registry Investigators. Circulation. 2012;126(10):1237–44.

    Article  PubMed  Google Scholar 

  57. Blanc J, Vouhé P, Bonnet D. Potts shunt in patients with pulmonary hypertension. N Engl J Med. 2004;350:623.

    Article  PubMed  CAS  Google Scholar 

  58. Esch JJ, Shah PB, Cockrill BA, Farber HW, Landzberg MJ, Mehra MR, Mullen MP, Opotowsky AR, Waxman AB, Lock JE, Marshall AC. Transcatheter Potts shunt creation in patients with severe pulmonary arterial hypertension: initial clinical experience. J Heart Lung Transplant. 2013;32(4):381–7.

    Article  PubMed  Google Scholar 

  59. Recla S, Steinbrenner B, Schreier J, Fichtlscherer S, Schmidt D, Apitz C, Müller M, Bauer J, Akintuerk H, Schranz D. Surgical-interventional hybrid orchestra consisting of Potts shunt, transcatheter tricuspid valve repair by Edwards-valve in a 26-year-old patient with pulmonary hypertension and right ventricular failure. World J Cardiovasc Dis. 2013;3:1–4.

    Article  Google Scholar 

  60. Fenton MJ, Chubb H, McMahon AM, Rees P, Elliott MJ, Burch M. Heart and heart–lung transplantation for idiopathic restrictive cardiomyopathy in children. Heart. 2006;92(1):85–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. McCartan C, Mason R, Jayasinghe R, Griffiths LR. Cardiomyopathy classification: ongoing debate in the genomics era. Biochem Res Int. 2012;2012:796926.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dragulescu A, Mertens L, Friedberg MK. Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging. 2013;6(2):254–61.

    Article  PubMed  Google Scholar 

  63. Maskatia SA, Decker JA, Spinner JA, Kim JJ, Price JF, Jefferies JL, Dreyer WJ, Smith EO, Rossano JW, Denfield SW. Restrictive physiology is associated with poor outcomes in children with hypertrophic cardiomyopathy. Pediatr Cardiol. 2012;33(1):141–9.

    Article  PubMed  Google Scholar 

  64. Murtuza B, Fenton M, Burch M, Gupta A, Muthialu N, Elliott MJ, Hsia TY, Tsang VT, Kostolny M. Pediatric heart transplantation for congenital and restrictive cardiomyopathy. Ann Thorac Surg. 2013;95(5):1675–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Schranz .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

2D-ECHO images of an infant with severe dilated cardiomyopathy (DCM) and severe mitral regurgitation, but preserved systolic right ventricular function. The enormous dilatation of the left ventricle (z-score +7) leads to a ventricular septum shift to the right with consecutive compression of the right ventricular dimension and inhibiting diastolic inflow despite small PFO (persistent foramen ovale); dilated left ventricle (left); and color Doppler of mitral regurgitation, and PFO flow (right). (AVI 8050 kb)

Four-chamber MRI images of an infant with severe DCM before (left), and following 4 months follow-up after PAB; clinical functional class improvement of Ross class IV to class II was associated by the left ventricular structural and functional improvement. The enormous dilatation of the impaired, dyssynchron LV function with compression of the right ventricle (left) changed by PAB to a better filled right ventricle despite hypertophic reaction, and reduction of LV preload (normalized left atrium dimension), together with IVS left-side shifting improved LV ejection fraction accompanied by synchrony of the contraction of the less dilated but more hypertrophied LV, respectively; the left-sided hypertrophy involved as expected the IVS, but surprisingly the LV posterior free wall, too. (AVI 1902 kb)

310219_1_En_7_MOESM3_ESM.avi

Four-chamber MRI imaging is shown of a newborn with borderline left ventricle before duct stenting and bilateral pulmonary banding was performed as a first palliation. (AVI 1163 kb)

310219_1_En_7_MOESM4a_ESM.avi

Angiographies of a stented duct show the right-to-left shunt ((a) in LAO 30° view, and (b) in lateral 90°) in an infant with borderline left ventricluar structures and associated suprasystemic pulmonary artery pressures (PAPs). Duct stenting allowed right ventricular decompression and clinical improvement; months later when a left-to-right shunt across the stented duct was observed the stent was percutaneously closed by an Amplatzer duct occluder followed by surgical repair of the mitral valve stenosis, sub-aortic stenosis and closure of a small ventricular septal defect, respectively. (AVI 761 kb)

310219_1_En_7_MOESM4b_ESM.avi

(AVI 1091 kb)

(a) Transesophageal imaging shows an extreme dilated left atrium caused by a restrictive left ventricle with preserved ejection fraction. (b) Shows an interatrial communication which was performed in the same patient (a) to influence the post-capillary induced pulmonary hypertension as well as atrial fibrillation by slightly decompression of the left atrium. Three months later PAPs were normalized. (AVI 6440 kb)

(AVI 9823 kb)

310219_1_En_7_MOESM6_ESM.avi

Demonstrates stent placement within the interatrial septum as one part as a strategy to treat end-staged suprasystemic pulmonary hypertension with right ventricular failure caused by left ventricular structural disease (see text). (AVI 5598 kb)

Video 7.3

Four-chamber MRI imaging is shown of a newborn with borderline left ventricle before duct stenting and bilateral pulmonary banding was performed as a first palliation. (AVI 1163 kb)

Video 7.4

Angiographies of a stented duct show the right-to-left shunt ((a) in LAO 30° view, and (b) in lateral 90°) in an infant with borderline left ventricluar structures and associated suprasystemic pulmonary artery pressures (PAPs). Duct stenting allowed right ventricular decompression and clinical improvement; months later when a left-to-right shunt across the stented duct was observed the stent was percutaneously closed by an Amplatzer duct occluder followed by surgical repair of the mitral valve stenosis, sub-aortic stenosis and closure of a small ventricular septal defect, respectively. (AVI 761 kb)

(AVI 1091 kb)

Video 7.5

(a) Transesophageal imaging shows an extreme dilated left atrium caused by a restrictive left ventricle with preserved ejection fraction. (b) Shows an interatrial communication which was performed in the same patient (a) to influence the post-capillary induced pulmonary hypertension as well as atrial fibrillation by slightly decompression of the left atrium. Three months later PAPs were normalized. (AVI 6440 kb)

Video 7.6

Demonstrates stent placement within the interatrial septum as one part as a strategy to treat end-staged suprasystemic pulmonary hypertension with right ventricular failure caused by left ventricular structural disease (see text). (AVI 5598 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schranz, D., Latus, H., Apitz, C. (2015). Right Ventricle in Structural and Functional Left Heart Failure in Children. In: Voelkel, N., Schranz, D. (eds) The Right Ventricle in Health and Disease. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1065-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1065-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1064-9

  • Online ISBN: 978-1-4939-1065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics