Skip to main content

Heart Disease Link to Fetal Hypoxia and Oxidative Stress

  • Conference paper
  • First Online:
Advances in Fetal and Neonatal Physiology

Abstract

The quality of the intrauterine environment interacts with our genetic makeup to shape the risk of developing disease in later life. Fetal chronic hypoxia is a common complication of pregnancy. This chapter reviews how fetal chronic hypoxia programmes cardiac and endothelial dysfunction in the offspring in adult life and discusses the mechanisms via which this may occur. Using an integrative approach in large and small animal models at the in vivo, isolated organ, cellular and molecular levels, our programmes of work have raised the hypothesis that oxidative stress in the fetal heart and vasculature underlies the mechanism via which prenatal hypoxia programmes cardiovascular dysfunction in later life. Developmental hypoxia independent of changes in maternal nutrition promotes fetal growth restriction and induces changes in the cardiovascular, metabolic and endocrine systems of the adult offspring, which are normally associated with disease states during ageing. Treatment with antioxidants of animal pregnancies complicated with reduced oxygen delivery to the fetus prevents the alterations in fetal growth, and the cardiovascular, metabolic and endocrine dysfunction in the fetal and adult offspring. The work reviewed offers both insight into mechanisms and possible therapeutic targets for clinical intervention against the early origin of cardiometabolic disease in pregnancy complicated by fetal chronic hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaffe H, Parer JT, Block BS, Llanos AJ. Cardiorespiratory responses to graded reductions of uterine blood flow in the sheep fetus. J Dev Physiol. 1987;9:325–36.

    CAS  PubMed  Google Scholar 

  2. Itskovitz J, LaGamma EF, Rudolph AM. The effect of reducing umbilical blood flow on fetal oxygenation. Am J Obstet Gynecol. 1983;145:813–8.

    CAS  PubMed  Google Scholar 

  3. Parer JT. The effect of acute maternal hypoxia on fetal oxygenation and the umbilical circulation in the sheep. Eur J Obstet Gynecol Reprod Biol. 1980;10:125–36.

    Article  CAS  PubMed  Google Scholar 

  4. Parer JT, Livingston EG. What is fetal distress? Am J Obstet Gynecol. 1990;162:1421–5.

    Article  CAS  PubMed  Google Scholar 

  5. Macfarlane CM, Tsakalakos N. Evidence of hyperinsulinaemia and hypoxaemia in the cord blood of neonates born to mothers with gestational diabetes. S Afr Med J. 1985;67:81–4.

    CAS  PubMed  Google Scholar 

  6. Galanti B, Kaihura CT, Ricci L, Bedocchi L, Rossi T, Benassi G, et al. Perinatal morbidity and mortality in children born to mothers with gestational hypertension. Acta Biomed Ateneo Parmense. 2000;71:361–5.

    PubMed  Google Scholar 

  7. Thilaganathan B, Salvesen DR, Abbas A, Ireland RM, Nicolaides KH. Fetal plasma erythropoietin concentration in red blood cell-isoimmunized pregnancies. Am J Obstet Gynecol. 1992;167:1292–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kendall G, Peebles D. Acute fetal hypoxia: the modulating effect of infection. Early Hum Dev. 2005;81:27–34.

    Article  CAS  PubMed  Google Scholar 

  9. Manzar S. Maternal sickle cell trait and fetal hypoxia. Am J Perinatol. 2000;17:367–70.

    Article  CAS  PubMed  Google Scholar 

  10. Mukherjee AB, Hodgen GD. Maternal ethanol exposure induces transient impairment of umbilical circulation and fetal hypoxia in monkeys. Science. 1982;218:700–2.

    Article  CAS  PubMed  Google Scholar 

  11. Witlin AG. Asthma in pregnancy. Semin Perinatol. 1997;21:284–97.

    Article  CAS  PubMed  Google Scholar 

  12. Tomson T, Danielsson BR, Winbladh B. Epilepsy and pregnancy. Balancing between risks to the mother and child. Lakartidningen. 1997;94:2827–35.

    CAS  PubMed  Google Scholar 

  13. Socol ML, Manning FA, Murata Y, Druzin ML. Maternal smoking causes fetal hypoxia: experimental evidence. Am J Obstet Gynecol. 1982;142:214–8.

    CAS  PubMed  Google Scholar 

  14. Maier RF, Bialobrzeski B, Gross A, Vogel M, Dudenhausen JW, Obladen M. Acute and chronic fetal hypoxia in monochorionic and dichorionic twins. Obstet Gynecol. 1995;86:973–7.

    Article  CAS  PubMed  Google Scholar 

  15. Stubblefield PG, Berek JS. Perinatal mortality in term and post-term births. Obstet Gynecol. 1980;56:676–82.

    CAS  PubMed  Google Scholar 

  16. Salafia CM, Minior VK, Lopez-Zeno JA, Whittington SS, Pezzullo JC, Vintzileos AM. Relationship between placental histologic features and umbilical cord blood gases in preterm gestations. Am J Obstet Gynecol. 1995;173:1058–64.

    Article  CAS  PubMed  Google Scholar 

  17. Leszczynska-Gorzelak B, Poniedzialek-Czajkowska E, Oleszczuk J. Fetal blood saturation during the 1st and 2nd stage of labor and its relation to the neonatal outcome. Gynecol Obstet Invest. 2002;54:159–63.

    Article  PubMed  Google Scholar 

  18. Yamada T, Yamada T, Morikawa M, Minakami H. Clinical features of abruptio placentae as a prominent cause of cerebral palsy. Early Hum Dev. 2012;88:861–4.

    Article  PubMed  Google Scholar 

  19. Kovalovszki L, Villanyi E, Benko G. Placental villous edema: a possible cause of antenatal hypoxia. Acta Paediatr Hung. 1990;30:209–15.

    CAS  PubMed  Google Scholar 

  20. Faiz SA, Habib FA, Sporrong BG, Khalil NA. Results of delivery in umbilical cord prolapse. Saudi Med J. 2003;24:754–7.

    PubMed  Google Scholar 

  21. Mukhopadhyay S, Arulkumaran S. Breech delivery. Best Pract Res Clin Obstet Gynaecol. 2002;16:31–42.

    Article  PubMed  Google Scholar 

  22. Preston R, Crosby ET, Kotarba D, Dudas H, Elliott RD. Maternal positioning affects fetal heart rate changes after epidural analgesia for labour. Can J Anaesth. 1983;40:1136–41.

    Article  Google Scholar 

  23. Marshall JM. The Joan Mott Prize Lecture. The integrated response to hypoxia: from circulation to cells. Exp Physiol. 1999;84:449–70.

    Article  CAS  PubMed  Google Scholar 

  24. Rudolph AM, Heymann MA. The fetal circulation. Annu Rev Med. 1968;19:195–206.

    Article  CAS  PubMed  Google Scholar 

  25. Rudolph AM, Itskovitz J, Iwamoto H, Reuss ML, Heymann MA. Fetal cardiovascular responses to stress. Semin Perinatol. 1981;5:109–21.

    CAS  PubMed  Google Scholar 

  26. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120:817–24.

    CAS  PubMed  Google Scholar 

  27. Fisher DJ, Heymann MA, Rudolph AM. Fetal myocardial oxygen and carbohydrate consumption during acutely induced hypoxemia. Am J Physiol. 1982;242:H657–61.

    CAS  PubMed  Google Scholar 

  28. Kirkpatrick SE, Pitlick PT, Naliboff J, Friedman WF. Frank-Starling relationship as an important determinant of fetal cardiac output. Am J Physiol. 1976;231:495–500.

    CAS  PubMed  Google Scholar 

  29. Thakor AS, Richter HG, Kane AD, Dunster C, Kelly FJ, Poston L, et al. Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol. 2010;588:4235–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Giussani DA, Spencer JA, Moore PJ, Bennet L, Hanson MA. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol. 1993;461:431–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. van Bel F, Sola A, Roman C, Rudolph AM. Role of nitric oxide in the regulation of the cerebral circulation in the lamb fetus during normoxemia and hypoxemia. Biol Neonate. 1995;68:200–10.

    Article  PubMed  Google Scholar 

  32. Jones CT, Robinson RO. Plasma catecholamines in foetal and adult sheep. J Physiol. 1975;248:15–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Fletcher AJ, Edwards CM, Gardner DS, Fowden AL, Giussani DA. Neuropeptide Y in the sheep fetus: effects of acute hypoxemia and dexamethasone during late gestation. Endocrinology. 2000;141:3976–82.

    CAS  PubMed  Google Scholar 

  34. Perez R, Espinoza M, Riquelme R, Parer JT, Llanos AJ. Arginine vasopressin mediates cardiovascular responses to hypoxemia in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 1989;256:R1011–8.

    CAS  Google Scholar 

  35. Morrison S, Gardner DS, Fletcher AJ, Bloomfield MR, Giussani DA. Enhanced nitric oxide activity offsets peripheral vasoconstriction during acute hypoxaemia via chemoreflex and adrenomedullary actions in the sheep fetus. J Physiol. 2003;547:283–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gardner DS, Fowden AL, Giussani DA. Adverse intrauterine conditions diminish the fetal defense to acute hypoxia by increasing nitric oxide activity. Circulation. 2002;106:2278–83.

    Article  CAS  PubMed  Google Scholar 

  37. Gardner DS, Giussani DA. Enhanced umbilical blood flow during acute hypoxemia following chronic umbilical cord compression: a role for nitric oxide. Circulation. 2003;108:331–5.

    Article  PubMed  Google Scholar 

  38. Thakor AS, Herrera EA, Serón-Ferré M, Giussani DA. Melatonin and vitamin C increase umbilical blood flow via nitric oxide-dependent mechanisms. J Pineal Res. 2010;49:399–406.

    Article  CAS  PubMed  Google Scholar 

  39. Kane AD, Herrera EA, Hansell JA, Giussani DA. Statin treatment depresses the fetal defence to acute hypoxia via increasing nitric oxide bioavailability. J Physiol. 2012;590:323–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Herrera EA, Kane AD, Hansell JA, Thakor AS, Allison BJ, Niu Y, et al. A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep. J Physiol. 2012;590:1825–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Barker DJP. Mothers, babies and disease in later life. London: BMJ Publishing Group; 1994.

    Google Scholar 

  42. Brenner BM. The etiology of adult hypertension and progressive renal injury: an hypothesis. Bull Mem Acad R Med Belg. 1994;149:121–5.

    CAS  PubMed  Google Scholar 

  43. Phillips DI, Hirst S, Clark PM, Hales CN, Osmond C. Fetal growth and insulin secretion in adult life. Diabetologia. 1994;37:592–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kamitomo M, Alonso JG, Okai T, Longo LD, Gilbert RD. Effects of long-term, high-altitude hypoxemia on ovine fetal cardiac output and blood flow distribution. Am J Obstet Gynecol. 1993;169:701–7.

    Article  CAS  PubMed  Google Scholar 

  45. Giussani DA, Davidge ST. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. 2013;4:328–37.

    Article  CAS  PubMed  Google Scholar 

  46. Giussani DA, Salinas CE, Villena M, Blanco CE. The role of oxygen in prenatal growth: studies in the chick embryo. J Physiol. 2007;585:911–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Salinas CE, Blanco CE, Villena M, Camm EJ, Tuckett JD, Weerakkody RA, et al. Cardiac and vascular disease prior to hatching in chick embryos incubated at high altitude. J Dev Orig Health Dis. 2010;1:60–6.

    Article  Google Scholar 

  48. McEniery CM, Wilkinson IB. Large artery stiffness and inflammation. J Hum Hypertens. 2005;19:507–9.

    Article  CAS  PubMed  Google Scholar 

  49. Arnett DK, Evans GW, Riley WA. Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol. 1994;140:669–82.

    CAS  PubMed  Google Scholar 

  50. Crispi F, Figueras F, Cruz-Lemini M, Bartrons J, Bijnens B, Gratacos E. Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstet Gynecol. 2012;207:121.e1–9.

    Article  Google Scholar 

  51. Skilton MR, Evans N, Griffiths KA, Harmer JA, Celermajer DS. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet. 2005;365:1484–6.

    Article  PubMed  Google Scholar 

  52. Koklu E, Kurtoglu S, Akcakus M, Koklu S, Buyukkayhan D, Gumus H, et al. Increased aortic intima-media thickness is related to lipid profile in newborns with intrauterine growth restriction. Horm Res. 2006;65:269–75.

    Article  CAS  PubMed  Google Scholar 

  53. Akira M, Yoshiyuki S. Placental circulation, fetal growth, and stiffness of the abdominal aorta in newborn infants. J Pediatr. 2006;148:49–53.

    Article  PubMed  Google Scholar 

  54. Cosmi E, Visentin S, Fanelli T, Mautone AJ, Zanardo V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet Gynecol. 2009;114:1109–14.

    Article  PubMed  Google Scholar 

  55. Keyes LE, Armaza JF, Niermeyer S, Vargas E, Young DA. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr Res. 2003;54:20–5.

    Article  PubMed  Google Scholar 

  56. Herrera EA, Reyes RV, Giussani DA, Riquelme RA, Sanhueza EM, Ebensperger G, et al. Carbon monoxide: a novel pulmonary artery vasodilator in neonatal llamas of the Andean altiplano. Cardiovasc Res. 2008;77:197–201.

    Article  CAS  PubMed  Google Scholar 

  57. Gassmann M, Ogunshola OO, Tissot van Patot M. The impact of hypoxia on cells, mice, and men. High Alt Med Biol. 2012;13:63–4.

    Article  PubMed  Google Scholar 

  58. Gilbert RD. Fetal myocardial responses to long-term hypoxemia. Comp Biochem Physiol A Mol Integr Physiol. 1998;119:669–74.

    Article  CAS  PubMed  Google Scholar 

  59. Sharma SK, Lucitti JL, Nordman C, Tinney JP, Tobita K, Keller BB. Impact of hypoxia on early chick embryo growth and cardiovascular function. Pediatr Res. 2006;59:116–20.

    Article  PubMed  Google Scholar 

  60. Patterson AJ, Zhang L. Hypoxia and fetal heart development. Curr Mol Med. 2010;10:653–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Davidge ST, Morton JS, Rueda-Clausen CF. Oxygen and perinatal origins of adulthood diseases: is oxidative stress the unifying element? Hypertension. 2008;52:808–10.

    Article  CAS  PubMed  Google Scholar 

  62. Giussani DA, Camm EJ, Niu Y, Richter HG, Blanco CE, Gottschalk R, et al. Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One. 2012;7:e31017.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Danson EJ, Li D, Wang L, Dawson TA, Paterson DJ. Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J Mol Cell Cardiol. 2009;46:482–9.

    Article  CAS  PubMed  Google Scholar 

  64. Bristow MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation. 2002;101:558–69.

    Article  Google Scholar 

  65. Camm EJ, Martin-Gronert MS, Wright NL, Hansell JA, Ozanne SE, Giussani DA. Prenatal hypoxia independent of undernutrition promotes molecular markers of insulin resistance in adult offspring. FASEB J. 2011;25:420–7.

    Article  CAS  PubMed  Google Scholar 

  66. Rueda-Clausen CF, Dolinsky VW, Morton JS, Proctor SD, Dyck JR, Davidge ST. Hypoxia-induced intrauterine growth restriction increases the susceptibility of rats to high-fat diet-induced metabolic syndrome. Diabetes. 2011;60:507–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Dolinsky VW, Rueda-Clausen CF, Morton JS, Davidge ST, Dyck JRB. Continued postnatal administration of resveratrol prevents diet-induced metabolic syndrome in offspring born growth restricted. Diabetes. 2011;60:2274–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Kane AD, Herrera EA, Camm EJ, Giussani DA. Vitamin C prevents intrauterine programming of in vivo cardiovascular dysfunction in the rat. Circ J. 2013;77:2604–11.

    Article  CAS  PubMed  Google Scholar 

  69. Richter HG, Camm EJ, Modi BN, Naeem F, Cross CM, Cindrova-Davies T, et al. Ascorbate prevents placental oxidative stress and enhances birth weight in hypoxic pregnancy in rats. J Physiol. 2012;590:1377–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Richter HG, Hansell JA, Raut S, Giussani DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009;46:357–64.

    Article  PubMed  Google Scholar 

  71. Hecher K, Snijders R, Campbell S, Nicolaides K. Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: relationship with fetal blood gases. Am J Obstet Gynecol. 1995;173:10–5.

    Article  CAS  PubMed  Google Scholar 

  72. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH. Vitamins in Pre-eclampsia (VIP) Trial Consortium. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet. 2006;367:1145–54.

    Article  CAS  PubMed  Google Scholar 

  73. Rumbold A, Duley L, Crowther CA, Haslam RR. Antioxidants for preventing pre-eclampsia. Cochrane Database Syst Rev. 2008;1, CD004227.

    PubMed  Google Scholar 

  74. Massey LK, Liebman M, Kynast-Gales SA. Ascorbate increases human oxaluria and kidney stone risk. J Nutr. 2005;135:1673–7.

    CAS  PubMed  Google Scholar 

  75. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: University Press; 2004.

    Google Scholar 

  76. Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103.

    Article  CAS  PubMed  Google Scholar 

  77. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–96.

    Article  CAS  PubMed  Google Scholar 

  78. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54:322–8.

    Article  CAS  PubMed  Google Scholar 

  79. Rodriguez-Cuenca S, Cochemé HM, Logan A, Abakumova I, Prime TA, Rose C, et al. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med. 2010;48:161–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dino Giussani is Professor of Cardiovascular Physiology & Medicine at the Department of Physiology Development & Neuroscience at the University of Cambridge, Professorial Fellow and Director of Studies in Medicine at Gonville & Caius College, a Lister Institute Fellow and a Royal Society Wolfson Research Merit Award Holder. He is supported by the British Heart Foundation, The Biotechnology and Biological Sciences Research Council and the Isaac Newton Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino A. Giussani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Giussani, D.A. et al. (2014). Heart Disease Link to Fetal Hypoxia and Oxidative Stress. In: Zhang, L., Ducsay, C. (eds) Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol 814. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1031-1_7

Download citation

Publish with us

Policies and ethics