Skip to main content

Longitudinal Beam Manipulations

  • Chapter
  • First Online:
Accelerator Physics at the Tevatron Collider

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 958 Accesses

Abstract

The RF systems installed in the synchrotrons can be used not only for beam acceleration but also to change the longitudinal beam characteristics. Below we present two nontrivial methods of “RF gymnastics” championed at the Fermilab accelerators to satisfy the needs of the Collider Run II—the so-called slip stacking and RF barrier buckets techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a quasi-adiabatic process that involves azimuthal displacement of a bunch in a synchrotron. Cogging is carried out by a continuous change in phase and/or frequency of an RF wave relative to a reference marker.

  2. 2.

    An optimum RR stack size is determined by several factors like the Tevatron luminosity life time, integrated luminosity delivered to collider detectors over a period of a week and also the rate at which the antiprotons are accumulated in the Accumulator Ring (see also discussion in Chap. 1).

  3. 3.

    In the absence of the electron cooling this is not true (A. Burov, private communications). In any case, the LMM guarantees mining of the particles with low longitudinal momenta.

References

  1. K. Koba, Status of the Fermilab Main Injector, in Proceedings of the 2001 IEEE Particle Accelerator Conference, Chicago, 2001, p. 27

    Google Scholar 

  2. K. Koba, Slip Stacking at Low Intensity – Status of the Beam Studies. Fermilab Internal Note MI-0294 (February 2003)

    Google Scholar 

  3. K. Koba, Slip Stacking Experiments at Fermilab Main Injector, in Proceedings of the 2003 IEEE Particle Accelerator Conference, Portland, 2003, p. 1736

    Google Scholar 

  4. K. Seiya et al., Status of Slip Stacking at the Fermilab Main Injector, in Proceedings of the 2005 IEEE Particle Accelerator Conference, Knoxville, 2005, p. 347

    Google Scholar 

  5. J. Dey et al., 53 MHz Beam Loading Compensation for Slip Stacking in the Fermilab Main Injector, in Proceedings of the 2005 IEEE Particle Accelerator Conference, Knoxville, 2005, p. 1958

    Google Scholar 

  6. I. Kourbanis, Present and Future High Energy Accelerator for Neutrino Experiment, in Proceedings of the 2007 IEEE Particle Accelerator Conference, Albuquerque, 2007, p. 731

    Google Scholar 

  7. K. Seiya et al., Multi-Batch Slip Stacking in the Main Injector at Fermilab, in Proceedings of the 2007 IEEE Particle Accelerator Conference, Albuquerque, 2007, p. 742

    Google Scholar 

  8. K. Seiya, Slip Stacking, in CARE-HHH-APD Workshop “BEAM’07”, Geneva, 1–5 October 2007

    Google Scholar 

  9. J.E. Griffin et al., IEEE Trans. Nucl. Sci., NS-30, 3502 (1983)

    Google Scholar 

  10. A.G. Ruggiero, Preprint CERN 68–22, Intersecting Storage Rings Division, 4 June, 1968 (and references there in); A.G. Ruggiero, ISR-Th/67-68

    Google Scholar 

  11. C.M. Bhat, Preprint FERMILAB-CONF-06-102-AD (2006)

    Google Scholar 

  12. G. Jackson (Ed.). Fermilab Recycler Ring Technical Design Report. Fermilab-TM-1991 (1996)

    Google Scholar 

  13. G. Dome, CERN SPS/84-13(ARF) (1984)

    Google Scholar 

  14. S.Y. Lee, Accelerator Physics (Chap. V), 1st edn. (World Scientific, Singapore, 1999), p. 305

    Google Scholar 

  15. S.Y. Lee, K.Y. Ng, Phys. Rev. E. 55, 5992 (1997)

    Google Scholar 

  16. T. Sen, C.M. Bhat, J.-F. Ostiguy, Preprint FERMILAB-TM-2431-APC

    Google Scholar 

  17. J.A. MacLachlan, in Proceedings of the International Conference on High Energy Accelerators (HEACC’98), XVII, Dubna, 184, 1998; J.A. MacLachlan, Fermilab Report No FN-529 (1989)

    Google Scholar 

  18. B. Chase et al., in Proceedings of the ICALEPS’97 (1997) (and private communications); P. Joireman, B. Chase, K. Meisner (private communications)

    Google Scholar 

  19. J. P. Marriner (2001–2002, private communications)

    Google Scholar 

  20. J.E. Dey, D.W. Wildman, in Proceedings of the 1999 IEEE Particle Accelerator Conference, 1999, p. 869

    Google Scholar 

  21. C.M. Bhat, Fermilab Internal Notes MI Note 287, August 2002; Beams-Doc-376-v1 (2002)

    Google Scholar 

  22. J.P. Marriner, C.M. Bhat (private communications, 2002)

    Google Scholar 

  23. J. Dey et al., in Proceedings of the 2003 IEEE Particle Accelerator Conference, 2003, p. 1204

    Google Scholar 

  24. J. Crisp et al., in Proceedings of the HB2006, 2006, p. 244

    Google Scholar 

  25. C.M. Bhat, K.Y. Ng, Preprint FERMILAB-CONF-03-395-T (2003)

    Google Scholar 

  26. M. Hu et al., in Proceedings of the 2007 IEEE Particle Accelerator Conference, 2007, p. 458; N. Eddy et. al. (private communications, 2007)

    Google Scholar 

  27. D. Boussard, Preprint CERN SPS/86-11(ARF) (1986)

    Google Scholar 

  28. V. Balbekov, S. Nagaitsev, in Proceedings of the EPAC04, 2004, p. 791

    Google Scholar 

  29. C.M. Bhat, J. Marriner, in Proceedings of the 2003 IEEE Particle Accelerator Conference, 2003, p. 514

    Google Scholar 

  30. D.R. Broemmelsiek et al., in Proceedings of the EPAC2004, 2004, p. 794

    Google Scholar 

  31. A. Burov, Fermilab Internal Notes Beams-doc-2866 (2007); C.M. Bhat, Beams-doc-2884 (2007)

    Google Scholar 

  32. B. Chase (private communications, 2002)

    Google Scholar 

  33. C.M. Bhat, in Proceedings of the 2003 IEEE Particle Accelerator Conference, 2003, p. 2345; C.M. Bhat, PAC2005, p 1093; C.M. Bhat, Beams-Doc-2057-V1, December 2005; J. MacLachlan, FERMILAB-Conf-00/117; C.M. Bhat, EPAC2008, p. 307; “Stacking of antiprotons by morph-merging,” P. Joireman, B. Chase (private communications 2007)

    Google Scholar 

  34. N. Eddy, J. Crisp, Preprint FERMILAB-Conf-06-100-AD; N. Eddy et al., AIP Conference Proceedings 868, p. 293 (2006); N. Eddy et al., in Proceedings of the EPAC2008, 2008, p. 3254

    Google Scholar 

  35. C.M. Bhat et al., in Proceedings of the 2005 IEEE Particle Accelerator Conference, 2005, p. 1763

    Google Scholar 

  36. P.C. Bhat, W.J. Spalding, in Proceedings of the 15th Topical Conference on Hadron Collider Physics, East Lansing, 2004, AIP Conference Proceedings 753:30 (2005); Run II Handbook, http://www-bd.fnal.gov/lug/runII_handbook/RunII_index.html

  37. C.M. Bhat, Phys. Lett. A 330, 481–486 (2004); C.M. Bhat, in Proceedings of the EPAC2004, 2004, p. 236; C.M. Bhat, Preprint FERMILAB-FN-746 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shiltsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhat, C., Seiya, K., Shiltsev, V. (2014). Longitudinal Beam Manipulations. In: Lebedev, V., Shiltsev, V. (eds) Accelerator Physics at the Tevatron Collider. Particle Acceleration and Detection. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0885-1_4

Download citation

Publish with us

Policies and ethics