Skip to main content

Abstract

Mucosal surfaces are exposed to a wide variety of antigens and represent the major access route for pathogens. The immune system at the distinct mucosal compartments is highly specialized and regulated as it has to distinguish between inoffensive antigens and potential pathogens. Mucosal vaccines offer important advantages over the widely used parenteral ones since they constitute the best strategy to stimulate protective immune responses at the mucosal-invading pathogen routes, which have been evidenced with the oral polio vaccine or other replicating vaccines. However, the development of mucosal vaccines, particularly subunit vaccines, has showed limited success because eliciting effective immune responses represents a significant challenge because the vaccine has to overcome the complex mucosal environment and also deal with the immune regulation mechanisms that maintain the homeostasis. Fortunately, advances in the knowledge of the organization and function of the mucosal immune system, which is basically divided into inductive and effector sites, have provided important clues for the design of mucosal vaccines. Particularly, the oral immunization route is still considered the safest route, and plant-based vaccines may represent a promising strategy to overcome obstacles related to the administration of antigens by this route since plant biomass possesses characteristics that influence the efficiency of delivery at the mucosal inductive sites as well as compounds that may serve as adjuvants to mount effective mucosal immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar JC, Rodríguez EG (2007) Vaccine adjuvants revisited. Vaccine 25:3752–3762

    Article  CAS  PubMed  Google Scholar 

  • Alving CR (1991) Liposomes as carriers of antigens and adjuvants. J Immunol Methods 140(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420

    Article  CAS  PubMed  Google Scholar 

  • Boyaka PN, Marinaro M, Jackson RJ, van Ginkel FW, Cormet-Boyaka E, Kirk KL, Kensil CR, McGhee JR (2001) Oral QS-21 requires early IL-4 help for induction of mucosal and systemic immunity. J Immunol 166:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg P, Farstad IN, Haraldsen G (1999) Regional specialization in the mucosal immune system: primed cells do not always home along the same track. Immunol Today 20:267–277

    Article  CAS  PubMed  Google Scholar 

  • Chabot S, Brewer A, Lowell G, Plante M, Cyr S, Burt DS, Ward BJ (2005) A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice. Vaccine 23:1374–1383

    Article  CAS  PubMed  Google Scholar 

  • Chabot SM, Chernin TS, Shawi M, Wagner J, Farrant S, Burt DS, Cyr S, Neutra MR (2007) TLR2 activation by proteosomes promotes uptake of particulate vaccines at mucosal surfaces. Vaccine 25:5348–5358

    Article  CAS  PubMed  Google Scholar 

  • Chadwick S, Kriegel C, Amiji M (2010) Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 62:394–407

    Article  CAS  PubMed  Google Scholar 

  • Chea EK, Fernández-Tejada A, Damani P, Adams MM, Gardner JR, Livingston PO, Ragupathi G, Gin DY (2012) Synthesis and preclinical evaluation of QS-21 variants leading to simplified vaccine adjuvants and mechanistic probes. J Am Chem Soc 134:13448–13457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheroutre H, Lambolez F, Mucida D (2011) The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 11:445–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drulis-Kawa Z, Dorotkiewicz-Jach A (2010) Liposomes as delivery systems for antibiotics. Int J Pharm 387:187–198

    Article  CAS  PubMed  Google Scholar 

  • Drummond DC, Zignani M, Leroux J (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460

    Article  CAS  PubMed  Google Scholar 

  • Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196

    Article  CAS  PubMed  Google Scholar 

  • Eriksson K, Holmgren J (2002) Recent advances in mucosal vaccines and adjuvants. Curr Opin Immunol 14:666–672

    Article  CAS  PubMed  Google Scholar 

  • Forrest ML, Koerber JT, Pack DW (2003) A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug Chem 14:934–940

    Article  CAS  PubMed  Google Scholar 

  • Freytag LC, Clements JD (2005) Mucosal adjuvants. Vaccine 23:1804–1813

    Article  CAS  PubMed  Google Scholar 

  • Govea-Alonso DO, Rubio-Infante N, García-Hernández AL, Varona-Santos JT, Korban SS, Moreno-Fierros L, Rosales-Mendoza S (2013) Immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic HIV protein. Planta 238(4):785–92. doi: 10.1007/s00425-013-1932-y. Epub 2013 Jul 30.

    Google Scholar 

  • Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10:453–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11:S45–S53

    Article  CAS  PubMed  Google Scholar 

  • Holmgren J, Czerkinsky C, Eriksson K, Mharandi A (2003) Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 21:S89–S95

    Article  PubMed  Google Scholar 

  • Holt PG, Strickland DH, Wikström ME, Jahnsen FL (2008) Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 8:142–152

    Article  CAS  PubMed  Google Scholar 

  • Hong-Xiang S, Yong X, Yi-Ping Y (2009) ISCOMs and ISCOMATRIX. Vaccine 27:4388–4401

    Article  Google Scholar 

  • Iwasaki A (2010) Antiviral immune responses in the genital tract: clues for vaccines. Nat Rev Immunol 10:699–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joffret ML, Morgeaux S, Laclerc C, Oth D, Zanetti C, Sureau P, Perrin P (1990) Enhancement of interleukin-2 activity by liposomes. Vaccine 8:385–389

    Article  CAS  PubMed  Google Scholar 

  • Karmali PP, Chaudhuri A (2007) Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med Res Rev 27:696–722

    Article  CAS  PubMed  Google Scholar 

  • Kersten GF, Crommelin DJ (2003) Liposomes and ISCOMs. Vaccine 21:915–920

    Article  CAS  PubMed  Google Scholar 

  • Kostrzak A, Cervantes Gonzalez M, Guetard D, Nagaraju DB, Wain-Hobson S, Tepfer D, Pniewski T, Sala M (2009) Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 27:4798–4807

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski PA, Williams SB, Lynch RM, Flanigan TP, Patterson RR, Cu-Uvin S, Neutra MR (2002) Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol 169:566–574

    Article  CAS  PubMed  Google Scholar 

  • Kunkel EJ, Butcher EC (2002) Chemokines and the tissue-specific migration of lymphocytes. Immunity 16:1–4

    Article  CAS  PubMed  Google Scholar 

  • Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7:767–783

    Article  CAS  PubMed  Google Scholar 

  • Lavelle EC, Grant G, Pusztai A, Pfüller U, O’Hagan DT (2000) Mucosal immunogenicity of plant lectins in mice. Immunology 99:30–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson LB, Norton EB, Clements JD (2012) Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Vaccine 30:142–154

    Article  Google Scholar 

  • Li X, Min M, Du N, Gu Y, Hode T, Naylor M, Chen D, Nordquist RE, Chen WR (2013). Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023

    PubMed Central  PubMed  Google Scholar 

  • Ludwig C, Wagner R (2007) Virus-like particles—universal molecular toolboxes. Curr Opin Biotechnol 18:537–545

    Article  CAS  PubMed  Google Scholar 

  • Lycke N (2012) Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 12:592–605

    Article  CAS  PubMed  Google Scholar 

  • Mallapragada SK, Narasimhan B (2008) Immunomodulatory biomaterials. Int J Pharm 364:265–271

    Article  CAS  PubMed  Google Scholar 

  • Manicassamy S, Pulendran B (2009) Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophages. Semin Immunol 21:22–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mantis NJ, Rol N, Corthésy B (2011) Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:603–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin M, Metzger DJ, Michalek SM, Connell TD, Russell MW (2000) Comparative analysis of the mucosal adjuvanticity of the type II heat-labile enterotoxins LT-IIa and LT-IIb. Infect Immun 68:281–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCluskie MJ, Weeratna RD, Krieg AM, Davis HL (2000) CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine 19:950–957

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2005) Immunization without needles. Nat Rev Immunol 5:905–916

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Fierros L, García-Hernández AL, Ilhuicatzi-Alvarado D, Rivera-Santiago L, Torres-Martínez M, Rubio-Infante N, Legorreta-Herrera M (2013) Cry1Ac protoxin from Bacillus thuringiensis promotes macrophage activation by upregulating CD80 and CD86 and by inducing IL-6, MCP-1 and TNF-α cytokines. Int Immunopharmacol 17(4):1051–66. doi: 10.1016/j.intimp.2013.10.005. Epub 2013

    Google Scholar 

  • Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341

    Article  CAS  PubMed  Google Scholar 

  • Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6:148–158

    Article  CAS  PubMed  Google Scholar 

  • Ogay ID, Lihoradova OA, Azimova ShS, Abdukarimov AA, Slack JM, Lynn DE (2006) Transfection of insect cell lines using polyethylenimine. Cytotechnology 51:89–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pabst O, Mowat AM (2012) Oral tolerance to food protein. Mucosal Immunol 5:232–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavot V, Rochereau N, Genin C, Verrier B, Paul S (2012) New insights in mucosal vaccine development. Vaccine 30:142–154

    Article  CAS  PubMed  Google Scholar 

  • Rappuoli R, Mandl CW, Black S, De Gregorio E (2011) Vaccines for the twenty-first century society. Nat Rev Immunol 11:865–872. doi:10.1038/nri3085

    Book  Google Scholar 

  • Reed SG, Bertholet S, Coler RN, Friede M (2009) New horizons in adjuvants for vaccine development. Trends Immunol 30:23–32

    Article  CAS  PubMed  Google Scholar 

  • Rescigno M (2011) The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol 32:256–264

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Hernández S, Rodríguez-Monroy MA, López-Revilla R, Reséndiz-Albor AA, Moreno-Fierros L (2004) Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis. Infect Immun 72:4368–4375

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosales-Mendoza S, Salazar-González JA (2014) Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 13:737–749

    Article  PubMed Central  PubMed  Google Scholar 

  • Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331–337

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Takagi M, Shimamoto A, Kawakami S, Hashida M (2007) Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials 28:1434–1442

    Article  CAS  PubMed  Google Scholar 

  • Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal CD103 + dendritic cells: master regulators of tolerance? Trends Immunol 32:412–419

    Article  CAS  PubMed  Google Scholar 

  • Shale M, Schiering C, Powrie F (2013) CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev 252:164–182

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma S, Hinds LA (2012) Formulation and delivery of vaccines: ongoing challenges for animal management. J Pharm Bioallied Sci 4:258–266

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma S, Mukkur TK, Benson HA, Chen Y (2009) Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci 98:812–843

    Article  CAS  PubMed  Google Scholar 

  • Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90:261–280

    Article  CAS  PubMed  Google Scholar 

  • Strugnell RA, Wijburg OL (2010) The role of secretory antibodies in infection immunity. Nat Rev Microbiol 8:656–667

    Article  CAS  PubMed  Google Scholar 

  • Takamura S, Niikura M, Li TC, Takeda N, Kusagawa S, Takebe Y, Miyamura T, Yasutomi Y (2004) DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther 11:628–635

    Article  CAS  PubMed  Google Scholar 

  • Vajdy M, Srivastava I, Polo J, Donnelly J, O’Hagan D, Singh M (2004) Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol Cell Biol 82:617–627

    Article  CAS  PubMed  Google Scholar 

  • Valiante NM (2003) Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2:727–735

    Article  PubMed  Google Scholar 

  • Weimer ET, Ervin SE, Wozniak DJ, Mizel SB (2009) Immunization of young African green monkeys with OprF epitope 8-OprI-type A- and B-flagellin fusion proteins promotes the production of protective antibodies against nonmucoid Pseudomonas aeruginosa. Vaccine 27:6762–6769

    Article  CAS  PubMed  Google Scholar 

  • Wong K, Sun G, Zhang X, Dai H, Liu Y, He C, Leong KW (2006) PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjug Chem 17:152–158

    Article  CAS  PubMed  Google Scholar 

  • Woodrow KA, Bennett KM, Lo DD (2012) Mucosal vaccine design and delivery. Annu Rev Biomed Eng 14:17–46

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Kiyono H, Yamamoto M, Imaoka K, Fujihashi K, Van Ginkel FW, Noda M, Takeda Y, McGhee JR (1997) A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc Natl Acad Sci U S A 94:5267–5272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Yuki Y, Kiyono H (2009) Mucosal vaccines: novel advances in technology and delivery. Expert Rev Vaccines 8:1083–1097

    Article  CAS  PubMed  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7:313–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: PAPIIT IN219013 and CONACYT 177612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Moreno-Fierros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

García-Hernández, A., Rubio-Infante, N., Moreno-Fierros, L. (2014). Mucosal Immunology and Oral Vaccination. In: Rosales-Mendoza, S. (eds) Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0850-9_2

Download citation

Publish with us

Policies and ethics