Skip to main content

Atypical Presentations of Diabetic Nephropathy and Novel Therapies

  • Chapter
  • First Online:
Diabetes and Kidney Disease

Abstract

Diabetes mellitus is a leading cause of end stage renal failure and contributes to a diffuse arteriolopathy. Diabetic nephropathy (DN) has been typically characterized by progressive proteinuria associated with progressive renal insufficiency. However this typical pattern of DN and proteinuria may be inadequate for a complete definition of DN. While glucotoxicity has been classically considered to be the agent of renal injury, other “atypical” mediators of renal injury also contribute. In addition, the renal pathologic changes can also be atypical for a sizable population of diabetics. The dissociation of albuminuria from declining glomerular filtration rate and even from the renal pathologic changes suggests alternative mechanisms are responsible for renal injury. Diabetes could be considered a chronic inflammatory disease with nephropathy resulting from the interplay of inflammatory mediators and the immune system. There are other unusual or “atypical” associations of the kidney and diabetes, which will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999;341:1127.

    CAS  PubMed  Google Scholar 

  2. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TS, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care. 2004;27:195–200.

    PubMed  Google Scholar 

  3. Parving HH, Lewis JB, Ravid M, Wajman A, Tadgell C, Remuzzi G, et al. Prevalence and risk factors for microalbuminuria in type 2 diabetic patients: a global perspective. Diabetologia. 2004;47 Suppl 1:A64.

    Google Scholar 

  4. Bakris G, McGill JB, Chen S, Li S, Collins A, Brown W. Microalbuminuria and hyperglycemia: the changing landscape of chronic kidney disease (CKD). Diabetes. 2005;54 Suppl 1:A54.

    Google Scholar 

  5. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells; retrieval is disrupted in nephrotic states. Kidney Int. 2007;71: 505–13.

    Google Scholar 

  6. Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1009–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Brocco E, Firoetto P, Maurer M, et al. Renal structure and function in non-insulin dependent diabetic patients with microalbuminuria. Kidney Int Suppl. 1997;63:S40–4.

    CAS  PubMed  Google Scholar 

  8. Rasch R, Dorup J. Quantitative morphology of the rat kidney during diabetes mellitus and insulin treatment. Diabetologia. 1997;40: 802–9.

    CAS  PubMed  Google Scholar 

  9. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol. 1999;10: 2569–76.

    CAS  PubMed  Google Scholar 

  10. Jin Y, Moriya T, Tanaka K, Matsubara M, Fujita Y. Glomerular hyperfiltration in non-proteinuric and non-hypertensive Japanese type 2 diabetic patients. Diabetes Res Clin Pract. 2006;71(3): 264–71.

    CAS  PubMed  Google Scholar 

  11. Jerums G, Premaratne E, Panagiotopoulos S, MacIsaac RJ. The clinical significance of hyperfiltration in diabetes. Diabetologia. 2010;53(10):2093–104.

    CAS  PubMed  Google Scholar 

  12. Persson P, Hansell P, Palm F. Tubular reabsorption and diabetes-induced glomerular hyperfiltration. Acta Physiol (Oxf). 2010; 200(1):3–10.

    CAS  Google Scholar 

  13. Hannedouche TP, Delgado AG, Gnionsahe DA, et al. Renal hemodynamics and segmental tubular reabsorption in early type I diabetes. Kidney Int. 1990;37:1126.

    CAS  PubMed  Google Scholar 

  14. Sabbatini M, Sansone G, Uccello F, et al. Early glycosylation products induce glomerular hyperfiltration in normal rats. Kidney Int. 1992;42:875.

    CAS  PubMed  Google Scholar 

  15. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V. Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest. 2001;107:217–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Pedersen SB, Flyvbjerg A, Richelsen B. Inhibition of renal ornithine decarboxylase activity prevents kidney hypertrophy in experimental diabetes. Am J Physiol. 1993;264:C433–56.

    Google Scholar 

  17. Vallon V, Blantz RC, Thomson S. Glomerular hyperfiltration and the salt paradox in early type 1 diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol. 2003;14:530–7.

    PubMed  Google Scholar 

  18. Vallon V, Wead LM, Blantz RC. Renal hemodynamics and plasma and kidney angiotensin II in established diabetes mellitus in rats: effect of sodium and salt restriction. J Am Soc Nephrol. 1995;5: 1761–7.

    CAS  PubMed  Google Scholar 

  19. Miller JA. Renal responses to sodium restriction in patients with early diabetes mellitus. J Am Soc Nephrol. 1997;8:749–55.

    CAS  PubMed  Google Scholar 

  20. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, et al. Glomerular hyperfiltration and renal disease progression in type II diabetes. Diabetes Care. 2012;35(10):2061–8. Epub 2012 Jul 6.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ficociello LH, Perkins BA, Roshan B, et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care. 2009;32:889–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Yokoyama H, Kanno S, Takahashi S, Yamada D, Itoh H, Saito K, Sone H, Haneda M. Determinants of decline in glomerular filtration rate in non-proteinuric subjects with or without diabetes and hypertension. Clin J Am Soc Nephrol. 2009;4:1432–40.

    PubMed Central  PubMed  Google Scholar 

  23. Tsalamandris C, Allen TJ, Gilbert RE, Sinha A, Panagiotopoulos S, Cooper ME, Jerums G. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes. 1994;43:649–55.

    CAS  PubMed  Google Scholar 

  24. Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, De Boer IH, Zinman B, Lachin J. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the Diabetes Control and Complications Trial (DCCT) and the Epidemiology of Diabetes Interventions and Complications Study (EDIC). Diabetes Care. 2010;33(7):1536–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Perkins BA, Ficociello LH, Ostrander BE, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. 2007;18:1353–61.

    CAS  PubMed  Google Scholar 

  26. Yagil C, Barak A, Ben-Dor D, Rosenmann E, Bernheim J, Rosner M, et al. Non-proteinuric diabetes-associated nephropathy in the Cohen rat model of type 2 diabetes. Diabetes. 2005;54:1487–96.

    CAS  PubMed  Google Scholar 

  27. Remuzzi A, Sangalli F, Fassi A, Remuzzi G. Albumin concentration in the Bowman’s capsule: multiphoton microscopy vs micropuncture technique. Kidney Int. 2007;72:1410–1.

    CAS  PubMed  Google Scholar 

  28. Gagliardini E, Conti S, Benigni A, Remuzzi G, Remuzzi A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J Am Soc Nephrol. 2010;21:2081–9.

    PubMed Central  PubMed  Google Scholar 

  29. Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol. 2010;21:1859–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Rangel-Filho A, Sharma M, Datta YH, Moreno C, Roman RJ, Iwamoto Y, Provoost AP, Lazar J, Jacob HJ. RF-2 gene modulates proteinuria and albuminuria independently of changes in glomerular permeability in the fawn-hooded hypertensive rat. J Am Soc Nephrol. 2005;16:852–6.

    CAS  PubMed  Google Scholar 

  31. Sidaway JE, Davidson RG, McTaggart F, Orton TC, Scott RC, Smith GJ, Brunskill NJ. Inhibitors of 3-hydroxy-3methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells. J Am Soc Nephrol. 2004;15:2258–65.

    CAS  PubMed  Google Scholar 

  32. Magee GM, Bilous RW, Caldwell CR, et al. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009;52:691–7.

    CAS  PubMed  Google Scholar 

  33. Caramori ML, Fioretto P, Maurer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 2000;49:1300–408.

    Google Scholar 

  34. Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348:2285–93.

    CAS  PubMed  Google Scholar 

  35. Jerums G, Allen TJ, Campbell DJ, Cooper ME, Gilbert RE, Hammond JJ, et al. Long term comparison between perindopril and nifedipine in normotensive patients with type 1 diabetes and microalbuminuria. Am J Kidney Dis. 2001;37:890–9.

    CAS  PubMed  Google Scholar 

  36. Jerums G, Panagiotopoulos S, Premaratne E, Power DA, MacIsaac RJ. Lowering of proteinuria in response to antihypertensive therapy predicts improved renal function in late but not in early diabetic nephropathy: a pooled analysis. Am J Nephrol. 2008;28:614–27.

    CAS  PubMed  Google Scholar 

  37. Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with type 1 diabetes and new onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77(1):57–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Yokoyama H, Hirohito S, Oishi M, Kawai K, Fukumoto Y, Kobayashi M. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant. 2009;24:1212–9.

    CAS  PubMed  Google Scholar 

  39. Ritz E. Type 2 diabetes: absence of proteinuria does not preclude loss of renal function. J Am Soc Nephrol. 2004;16:284–5.

    Google Scholar 

  40. MacIsaac RJ, Panagiotopoulos S, McNeil KJ, et al. Is non-albuminuric renal insufficiency in type 2 diabetes related to an increase in intra-renal vascular disease? Diabetes Care. 2006; 29:1560.

    PubMed  Google Scholar 

  41. Fioretto P, Maurer M, Brocco E, Velussi M, Frigato F, Muollo B, Sambataro M, Abaterusso C, Baggio B, Crepaldi G, Nosadini R. Patterns of renal injury in NIDDM patients with micro-albuminuria. Diabetologia. 1996;39:1569–76.

    CAS  PubMed  Google Scholar 

  42. Ruggenenti P, Gambara V, Perna A, Bertani T, Remuzzi G. The nephropathy of non-insulin dependent diabetes: predictors of outcome relative to diverse patterns of renal injury. J Am Soc Nephrol. 1998;9:2336–43.

    CAS  PubMed  Google Scholar 

  43. Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z. Irbesartan normalizes the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia. 2001;44:874–7.

    CAS  PubMed  Google Scholar 

  44. Langham RG, Kelly DJ, Cox AJ, Thomson NM, Holthofer H, Zaoui P, et al. Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia. 2002;45:1572–6.

    CAS  PubMed  Google Scholar 

  45. Maeda S, Osawa N, Hayashi T, Tsukada S, Kobayashi M, Kikkawa R. Genetic variations associated with diabetic nephropathy and type II diabetes in a Japanese population. Kidney Int Suppl. 2007;106:S43–8.

    CAS  PubMed  Google Scholar 

  46. Ng DP, Nurbaya S, Choo S, Koh D, Chia KS, Krolewski AS. Genetic variation at the SLC12A3 locus is unlikely to explain risk for advanced diabetic nephropathy in Caucasians with type II diabetes. Nephrol Dial Transplant. 2008;23:2260–4.

    CAS  PubMed  Google Scholar 

  47. Shimazaki A, Tanaka Y, Shinosaki T, Ikeda M, Watada H, Hirose T, Kawamori R, Maeda S. ELMO-1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs. Kidney Int. 2006;70:1769–76.

    CAS  PubMed  Google Scholar 

  48. Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, Ng DP, Placha G, Canani LH, Bochenski J, Waggott D, Merchant ML, Mirea L, Wanic K, Katavetin P, Kure M, Wolkow P, Dunn JS, Smiles A, Walker WH, Boright AP, Bull SB, DCCT/EDIC Research Group, Doria A, Rogus JJ, Rich SS, Warram JH, Krolewski AS. Genome-wide association scans for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58:1403–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Jeffers BW, Estacio RO, Ranolds MV, Schrier RW. Angiotensin converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus and its relationship with diabetic nephropathy. Kidney Int. 1997;52:473.

    CAS  PubMed  Google Scholar 

  50. Granhall C, Park HB, Fakhrai-Rad H, Luthman H. High-resolution quantitative trait locus analysis reveals multiple diabetes susceptibility loci mapped to intervals < 800 kb in the species-conserved Niddm1i of the GK rat. Genetics. 2006;174:1565–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Andersson SA, Olsson AH, Esguerra JL, Heimann E, Ladenvall C, Edlund A, Salehi A, Taneera J, Degerman E, Groop L, Ling C, Eliasson L. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol. 2012;364(1–2):36–45.

    CAS  PubMed  Google Scholar 

  52. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrarsdottir U, Magnusson KP, Walters GB, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3.

    CAS  PubMed  Google Scholar 

  53. Esguerra JL, Bolmeson C, Cilio CM, Eliasson L. Differential glucose-regulation of micro-RNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One. 2011;6(4):e18613.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, Renstrom E, Wollheim CB, Nitert MD, Ling C. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012;26(7):1203–12.

    CAS  PubMed  Google Scholar 

  55. Lebovitz HE. Type 2 diabetes: an overview. Clin Chem. 1999;45:1339–45.

    CAS  PubMed  Google Scholar 

  56. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    CAS  PubMed  Google Scholar 

  57. Unger RH. Lipotoxic diseases. Annu Rev Med. 2002;53:319–26.

    CAS  PubMed  Google Scholar 

  58. Benigni A, Gagliardini E, Tomasoni S, et al. Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney Int. 2004;65:2193.

    CAS  PubMed  Google Scholar 

  59. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106:2067–72.

    CAS  PubMed  Google Scholar 

  60. Gonzalez Y, Herrera MT, Soldevila G, Garcia-Garcia L, Fabian G, Perez-Armendariz EM, Bobadilla K, Guzman-Beltran S, Sada E, Torres M. High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes. BMC Immunol. 2012;13:19.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27:813–23.

    PubMed  Google Scholar 

  62. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    CAS  PubMed  Google Scholar 

  63. Orie NN, Zidek W, Tepel M. Increased intracellular generation of reactive oxygen species in mononuclear leukocytes from patients with diabetes type 2. Exp Clin Endocrinol Diabetes. 2000;108: 175–80.

    CAS  PubMed  Google Scholar 

  64. Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B, Warram JH, Krolewski AS. Serum concentrations of markers of TNFα and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol. 2009;4(1):62–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Navarro JF, Mora-Fernandez C. The role of TNFα in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 2006;17:441–50 [PubMed17113815].

    CAS  PubMed  Google Scholar 

  66. Ortiz A, Lorz C, Egido J. The Fas ligand/Fas system in renal injury. Nephrol Dial Transplant. 1999;14:1831–4 [PubMed 10462254].

    CAS  PubMed  Google Scholar 

  67. Al Lamki RS, Wang J, Vandenabeele P, Bradley JA, Thiru S, Luo D, Min W, Pober JS, Bradley JR. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. FASEB J. 2005;19:1637–45 [PubMed 16195372].

    CAS  PubMed  Google Scholar 

  68. Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, Cullere X, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23:507–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Bemelmans MH, Gouma DJ, Buurman WA. Tissue distribution and clearance of soluble murine TNF receptors in mice. Cytokine. 1994;6:608–15.

    CAS  PubMed  Google Scholar 

  70. Bash LD, Selvin E, Steffes M, Coresh J, Astor BC. Poor glycemic control in diabetes and the risk of incident chronic kidney disease even in the absence of albuminuria and retinopathy: the atherosclerosis risk in communities (ARIC) study. Arch Intern Med. 2008;168(22):2440–7.

    PubMed Central  PubMed  Google Scholar 

  71. Abbate C, Corna M, Capitanio M, Bertani T, Remuzxi G. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol. 1998;9: 1213–24.

    CAS  PubMed  Google Scholar 

  72. Li M, Balamuthusamy S, Simon EE, Batuman V. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells. Am J Physiol Renal Physiol. 2008;295(1):F82–90.

    CAS  PubMed  Google Scholar 

  73. Sengul S, Zwizinski C, Simon EE, Kapasi A, Singhal PC, Batuman V. Endocytosis of light chains induces cytokines through activation of NF-κB in human proximal tubule cells. Kidney Int. 2002;62:1977–88.

    CAS  PubMed  Google Scholar 

  74. Sengul S, Zwizinski C, Batuman V. Role of MAPK pathways in light chain-induced cytokine production in human proximal tubule cells. Am J Physiol Renal Physiol. 2003;284:F1245–54.

    CAS  PubMed  Google Scholar 

  75. Wang PX, Sanders PW. Immunoglobulin light chains generate hydrogen peroxide. J Am Soc Nephrol. 2007;18(4):1239–45.

    CAS  PubMed  Google Scholar 

  76. Gilbert RE, Cooper ME. The tubulo-interstitium in progressive diabetic kidney disease; more than an aftermath of glomerular injury? Kidney Int. 1999;56:1627–37.

    CAS  PubMed  Google Scholar 

  77. Hutchison CA, Harding S, Hewins P, Mead GP, Townsend J, Bradwell AR, Cockwell P. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1684–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Hostetter TH, Nath KA. Role of prostaglandins in experimental renal disease. Contrib Nephrol. 1989;75:13–8.

    CAS  PubMed  Google Scholar 

  79. Groop L, Makipernaa A, Stenman S, DeFronzo RA, Teppo AM. Urinary excretion of kappa light chains in patients with diabetes mellitus. Kidney Int. 1990;37:1120–5.

    CAS  PubMed  Google Scholar 

  80. Hassan SB, Hanna MOF. Urinary κ and λ immunoglobulin light chains in normoalbuminuric type 2 diabetes mellitus patients. J Clin Lab Anal. 2011;25:229–32.

    CAS  PubMed  Google Scholar 

  81. Redegeld FA, van der Heijden MW, Kool M, Heijdra BM, Garssen J, Kraneveld AD, Van Loveren H, Roholl P, Saito T, Verbeek JS, Claassens J, Koster AS, Nijkamp FP. Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nat Med. 2002;8(7):694–701.

    CAS  PubMed  Google Scholar 

  82. Rijnierse A, Kroese ABA, Redegeld FA, Blokhuis BRJ, van der Heijdan MW, Koster AS, Timmermans JP, Nijkamp FP, Kraneveld AD. Immunoglobulin-free light chains mediate antigen-specific responses of murine dorsal root ganglion neurons. J Neuroimmunol. 2009;208(1):80–6.

    CAS  PubMed  Google Scholar 

  83. Jarman PR, Kehely AM, Mather HM. Hyperkalaemia in diabetes: prevalence and associations. Postgrad Med J. 1995;71:551–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lindblad P, Chow WH, Chan J, Bergstrom A, Wolk A, Gridley G, McLaughlin JK, Nyren O, Adami HO. The role of diabetes mellitus in the aetiology of renal cell cancer. Diabetologia. 1999;42(1):107–12.

    CAS  PubMed  Google Scholar 

  85. Habib SL, Prihoda TJ, Luna M, Werner SA. Diabetes and risk of renal cell carcinoma. J Cancer. 2012;3:42–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Giovannucci E. Insulin, insulin like growth factors and colon cancer: a review of the evidence. J Nutr. 2001;131:3109S–20.

    CAS  PubMed  Google Scholar 

  87. Bruce WR, Giacca A, Medline A. Possible mechanisms relating diet and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:1271–9.

    CAS  PubMed  Google Scholar 

  88. Lowrance WT, Thompson RH, Yee DS, Kaag M, Donat SM, Russo P. Obesity is associated with a higher risk of clear-cell renal carcinoma than with other histologies. BJU Int. 2009;105:16–20.

    PubMed Central  PubMed  Google Scholar 

  89. Hjartaker A, Langseth H, Weiderpass E. Obesity and diabetes epidemics: cancer repercussions. Adv Exp Med Biol. 2008;630: 72–93.

    PubMed  Google Scholar 

  90. Ueda T, Yoshimura N, Yoshida O. Diabetic cystopathy: relationship to autonomic neuropathy detected by sympathetic skin responses. J Urol. 1997;157(2):580–4.

    CAS  PubMed  Google Scholar 

  91. Bansal R, Agarwal MM, Modi M, Mandal AK, Singh SK. Urodynamic profile of diabetic patients with lower urinary tract symptoms: association of diabetic cystopathy with autonomic and peripheral neuropathy. Urology. 2011;77(3):699–705.

    PubMed  Google Scholar 

  92. Evans R, Eppel GA, Michaels S, Burke SL, Nematbakhsh M, Head GA, Carroll JF, O’Connor PM. Multi-mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rats. Am J Physiol Renal Physiol. 2010;298:F1235–43.

    CAS  PubMed  Google Scholar 

  93. Aspelin P, Aubry P, Fransson SG, et al. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491.

    CAS  PubMed  Google Scholar 

  94. Agmon Y, Peleg H, Greenfeld Z, et al. Regional alterations in renal haemodynamics and oxygenation: a role in contrast medium-induced nephropathy. Nephrol Dial Transplant. 2005;20 Suppl 1:i6.

    Google Scholar 

  95. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320:143.

    CAS  PubMed  Google Scholar 

  96. Rudnick MR, Goldfarb S, Wexler L, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47:254.

    CAS  PubMed  Google Scholar 

  97. Wasaki M, Sugimoto J, Shirota K. Glucose alters the susceptibility of mesangial cells to contrast media. Invest Radiol. 2001;36(7):355–62.

    CAS  PubMed  Google Scholar 

  98. Patti G, Ricottini E, Nusca A, Colonna G, Pasceri V, D’Ambrosio A, Montinaro A, DiSciascio G. Short term high dose atorvastatin pre-treatment to prevent contrast-induced nephropathy in patients with acute coronary syndrome undergoing percutaneous coronary intervention (from ARMYDA-CIN—atorvastatin for reduction of myocardial damage during angioplasty—contrast induced nephropathy) trial. Am J Cardiol. 2011;108(1):1–7.

    CAS  PubMed  Google Scholar 

  99. Ozhan H, Erden I, Ordu S, Aydin M, Caglar O, Basar C, Yalein S, Alemdar R. Efficacy of short-term high dose atorvastatin for prevention of contrast-induced nephropathy in patients undergoing coronary arteriography. Angiology. 2010;61(7):711–4.

    CAS  PubMed  Google Scholar 

  100. Quintavalle C, Fiore D, DeMicco F, Visconti G, Focaccio A, Golia B, Ricciardelli B, Donnarumma E, Bianco A, Zabatta MA, Troncone G, Colomo A, Briguori C, Condorelli G. Impact of a high loading dose of atorvastatin on contrast-induced kidney injury. Circulation. 2012;126(25):3008–16.

    CAS  PubMed  Google Scholar 

  101. Pignatelli P, Carnevale R, Pastori D, Napoleone L, et al. Immediate antioxidant and antiplatelet effect of atorvastatin via inhibition of Nox2. Circulation. 2012;126(1):92–103.

    CAS  PubMed  Google Scholar 

  102. Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, Marsch S, Roskamm H. Prevention of contrast media-associated nephropathy. Arch Intern Med. 2002;162:329–36.

    CAS  PubMed  Google Scholar 

  103. Leone AM, DeCaterina AR, Sciabasi A, Aurelio A, Basile E, Porto I, Trani C, Burzotta F, Niccoli G, Mongiardo R, Mazzari MA, Buffon A, Panocchia N, Romagnoli E, Lioy E, Rebuzzi AG, Crea F. Sodium bicarbonate plus N-acetylcysteine to prevent contrast-induced nephropathy in primary and rescue percutaneous coronary interventions: the BINARIO study. EuroIntervention. 2012;8(7):839–47.

    PubMed  Google Scholar 

  104. Briguori C. Renalguard system in high-risk patients for contrast-induced acute kidney injury. Minerva Cardioangiol. 2012;60(3): 291–7.

    CAS  PubMed  Google Scholar 

  105. Duong MH, MacKenzie TA, Malenka DJ. N-acetylcysteine prophylaxis significantly reduces the risk of radiocontrast-induced nephropathy: comprehensive meta-analysis. Catheter Cardiovasc Interv. 2005;64(4):471–9.

    PubMed  Google Scholar 

  106. Momeni A, Mirhoseini M, Beigi FM, Esfahani MR, Kheiri S, Amiri M, Seidain Z. Effect of N-acetylcysteine in prevention of contrast nephropathy on patients under intravenous pyelography and contrast CT. Adv Biomed Res. 2012;1:28. Epub 2012 July 6.

    PubMed Central  PubMed  Google Scholar 

  107. Parving HH, Gall MA, Scott P, et al. Prevalence and causes of albuminuria in non-insulin dependent diabetic patients. Kidney Int. 1992;41:758.

    CAS  PubMed  Google Scholar 

  108. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49:S12.

    Google Scholar 

  109. Wood S. ALTITUDE halted: adverse events when aliskiren added to ACE, ARB therapy. Heart Wire. Available at: http://www.theheart.org/article/1331173.co. Accessed 3 July 2012.

  110. Titan SM, Vieira J Jr M, Dominguez WV, Barros RT, Zatz R. ACEI and ARB combination therapy in patients with macro-albuminuric diabetic nephropathy and low socioeconomic level: a double-blind randomized clinical trial. Clin Nephrol. 2011;76:273–83.

    CAS  PubMed  Google Scholar 

  111. Krairittichai U, Chaisuvannarat V. Effects of dual blockade of renin-angiotensin system in type Shibata S, Fujita T: mineralocorticoid receptors in the pathophysiology of chronic kidney diseases and the metabolic syndrome. Mol Cell Endocrinol 350: 273–280, 20122 diabetes patients with diabetic nephropathy. J Med Assoc Thai. 2009;92:611–7.

    PubMed  Google Scholar 

  112. Shibata S, Fujita T. Mineralocorticoid receptors in the pathophysiology of chronic kidney diseases and the metabolic syndrome. Mol Cell Endocrinol. 2012;350:273–80.

    CAS  PubMed  Google Scholar 

  113. Nagase M, Fugita T. Aldosterone and glomerular podocyte injury. Clin Exp Nephrol. 2008;12:233–42.

    CAS  PubMed  Google Scholar 

  114. Medhi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol. 2009;20:2641–50.

    Google Scholar 

  115. Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, Viberti G, ASCEND Study Group. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):527–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. MacEwen A, McKay GA, Fisher M. Drugs for diabetes: part 8, SGLT2 inhibitors. Br J Cardiol. 2012;19:26–9.

    Google Scholar 

  117. Ferannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetes patients with inadequate glycaemic control by diet and exercise: a randomized, double-blind, placebo-controlled phase III trial. Diabetes Care. 2010;3:217–24.

    Google Scholar 

  118. Abdul-Ghani MA, Norton L, DeFronzo RA. Efficacy and safety of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus. Curr Diab Rep. 2012;12(3):230–8. Review.

    Google Scholar 

  119. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315–21.

    CAS  PubMed  Google Scholar 

  120. Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, Friedman EA, Cerami A, Vlassara H. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325:836–42.

    CAS  PubMed  Google Scholar 

  121. He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999;48:1308–15.

    CAS  PubMed  Google Scholar 

  122. Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, Mooradian AD, Spinowitz BS. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials. 1999;20:493–510.

    CAS  PubMed  Google Scholar 

  123. Ramasamy R, Yan SF, Schmidt AM. Advanced glycation end-products: from precursors to RAGE: round and round we go. Amino Acids. 2012;42:1151–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. D’Agati V, Yan SF, Ramasamy R, Schmidt AM. RAGE, glomerulosclerosis and proteinuria. roles in podocytes and endothelial cells. Trends Endocrinol Metab. 2010;21:50–6.

    PubMed  Google Scholar 

  125. Olefsky JM, Glass CK. Macrophages, inflammation and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    CAS  PubMed  Google Scholar 

  126. Fan W, Morinaga H, Kim JJ, Bae E, Spann NJ, Heinz S, Glass CK, Olefsky JM. Fox01 regulates Tlr- 4 inflammatory pathway signaling in macrophages. EMBO J. 2010;29:4223–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest. 2008;118:1645–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Shirwany NA, Zou MH. AMPK in cardiovascular health and disease. Acta Pharmacol Sin. 2010;31:1075–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Darisipudi MN, Kulkami OP, Sayyed SG, Ryu M, Migliorini A, Sagrinati C, Parente E, Vater A, Eulberg D, Klussmann S, Romagnani P, Anders HJ. Dual blockade of the homeostatic chemokine CXCLl2 and the pro-inflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol. 2011;179:116–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Giunti S, Barutta F, Perin PC, Gruden G. Targeting the MCP-1/CCR2 system in diabetic kidney disease. Curr Vasc Pharmacol. 2010;8:849–60.

    CAS  PubMed  Google Scholar 

  131. Ortiz-Munoz G, Lopez-Parra V, Lopez-Franco O, Fernandez-Vizarra P, Mallavia B, Flores C, Sanz A, Blanco J, Mezzano S, Ortiz A, Egido J, Gomez-Guerrero C. Suppressors of cytokine signaling abrogate diabetic nephropathy. J Am Soc Nephrol. 2010;21:763–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Wang Q, Zhang M, Liang B, Shirwany N, Zhu Y, Zou MH. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. PLoS One. 2011;6:e25436.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, Foretz M, Viollet B, Weinberg JM, Choudhury GG, Kasinath BS. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol. 2007;292:F617–27.

    CAS  PubMed  Google Scholar 

  134. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem. 2010;285:37503–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Decleves AI, Mathew AV, Cunard R, Sharma K. AMPK medicates the initiation of kidney disease induced by a high fat diet. J Am Soc Nephrol. 2011;22:1846–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Lee MJ, Feliers D, Sataranatarajan K, Mariappan MM, Li M, Barnes JL, Choudhury GG, Kasinath BS. Resveratrol ameliorates high glucose-induced protein synthesis in glomerular epithelial cells. Cell Signal. 2010;22:65–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8:157–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Hung AM, Roumie CL, Greevy RA, Liu X, Grijalva CG, Murff HJ, Ikizler TA, Griffin MR. Comparative effectiveness of incident oral anti-diabetic drugs on kidney function. Kidney Int. 2012;81:698–706.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashiwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun. 2006;340:296–301.

    CAS  PubMed  Google Scholar 

  140. Chen JK, Chen J, Thomas G, Kozma SC, Harris RC. S6 kinase 1 knockout inhibits uni-nephrectomy- or diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol. 2009;297:F585–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G, Rama I, Vidal A, Grinyo JM. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol. 2006;17:1395–404.

    CAS  PubMed  Google Scholar 

  142. Godel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, Debreczeni-Mór A, Lindenmeyer MT, Rastaldi MP, Hartleben G, Wiech T, Fornoni A, Nelson RG, Kretzler M, Wanke R, Pavenstadt H, Kerjaschki D, Cohen CD, Hall MN, Ruegg MA, Inoki K, Walz G, Huber TB. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197–209.

    PubMed Central  PubMed  Google Scholar 

  143. Kasinath BS, Mariappan MM, Sataranatarajan K, Lee MJ, Ghosh-Choudhury G, Feliers D. Novel mechanisms of protein synthesis in diabetic nephropathy-role of mRNA translation. Rev Endocr Metab Disord. 2008;9:255–66.

    CAS  PubMed  Google Scholar 

  144. Wu QQ, Wang Y, Senitko M, Meyer C, Wigley WC, Ferguson DA, Grossman E, Chen J, Zhou XL, Hartono J, Winterberg P, Chen B, Agarwal A, Lu CY. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARy, and HO-1. Am J Physiol Renal Physiol. 2011;300:F1180–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Pareek TK, Belkadi A, Kesavapany S, Zaremba A, Loh SL, Bai L, Cohen ML, Meyer C, Liby KT, Miller RH, Sporn MB, Letterio JJ. Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuro-inflammation and promotes re-myelination in autoimmune encephalomyelitis. Sci Rep. 2011;1:201.

    PubMed Central  PubMed  Google Scholar 

  146. Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittes J, Wamock DG. BEAM Study Investigators: bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365:327–36.

    CAS  PubMed  Google Scholar 

  147. Saha PK, Reddy VT, Konopleva M, Andreeff M, Chan L. The triterpenoid 2-cyano-3, 12-dioxooleana-1,9-dien-28-oic-acid methyl ester has potent anti-diabetic effects in diet-induced diabetic mice and Lepr(db/db) mice. J Biol Chem. 2010;285:40581–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Yore MM, Kettenbach AN, Sporn MB, Gerber SA, Liby KT. Proteomic analysis shows synthetic oleanane triterpenoid binds to mTOR. PLoS One. 2011;6:e22862.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Tayek JA, Kalantar-Zadeh K. The extinguished BEACON of bardoxolone: not a Monday quarterback story. Am J Nephrol. 2013;37(3):208–11.

    PubMed Central  PubMed  Google Scholar 

  150. Reata Pharmaceuticals press release, October 18, 2012: Reata halts its phase 3 trial of bardoxolone secondary to mortality in the treatment arm.

    Google Scholar 

  151. Al-Bayati MA, Xie Y, Mohr FC, Margolin SB, Giri SN. Effect of pirfenidone against vanadate induced kidney fibrosis in rats. Biochem Pharmacol. 2002;64:517–25.

    CAS  PubMed  Google Scholar 

  152. Shimizu T, Fukagawa M, Kuroda T, Hata S, Iwasaki Y, Nemoto M, Shirai K, Yamanchi S, Margolin SB, Shimizu F, Kurokawa K. Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int Suppl. 1997;63:S239–43.

    CAS  PubMed  Google Scholar 

  153. Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR, Francos B, Sharma S, Falkner B, McGowan TA, Donohue M, Ramachandrarao S, Xu R, Fervenza FC, Kopp JB. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22:1144–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45:522–30.

    CAS  PubMed  Google Scholar 

  155. Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, Chen S, McGowan TA, Sharma K. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal anti-transforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A. 2000;97:8015–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting MicroRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23:458–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Krutzfeldt J, Rajewsky N, Braich R, Rajeef KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with “antagomirs”. Nature. 2005;438:685–9.

    PubMed  Google Scholar 

  158. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, Arroyo D, Luno J. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5:1388–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. KDIGO Board Members; Eknoyan G, Lameire N, Eckardt KU, Kasiske B, Wheeler DC, Abboud OI, Adler S, Agarwal R, Andreoli SP, Becker GJ, Brown F, Cattran DC, Collins AJ, Coppo R, Coresh J, Correa-Rotter R, Covic A, Craig JC, de Francisco Angel LM, de Jong PE, Figueiredo A, Gharbi MB, Guyatt G, Harris D, Hooi LS, Imai E, Inker LA, Jadoul M, Jenkins S, Kim S, Kuhlmann MK, Levin NW, Li PKT, Liu ZH, Massari P, McCullough PA, Moosa R, Riella MC, Rizvi AH, Rodriguez-Iturbe B, Schrier R, Silver J, Tonelli M, Tsukamoto Y, Vogels T, Wang A Yee-Moon, Wanner C, Zakharova E. KDIGO 2012 clinical practice guidelines for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Imbriano M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Imbriano, L.J., Maesaka, J.K., Mattana, J., Shirazian, S., Jerums, G. (2014). Atypical Presentations of Diabetic Nephropathy and Novel Therapies. In: Lerma, E., Batuman, V. (eds) Diabetes and Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0793-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0793-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0792-2

  • Online ISBN: 978-1-4939-0793-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics