Skip to main content

Renal Structural Changes in Type 1 and 2 Diabetes Mellitus: Pathology, Pathogenesis, and Clinical Correlations

  • Chapter
  • First Online:
Diabetes and Kidney Disease

Abstract

Diabetes mellitus represents an increasing health problem worldwide. Renal involvement in diabetic patients occurs in a subset of these patients, often playing a key role in morbidity and mortality. Diabetic nephropathy is the major cause of chronic renal disease and end-stage renal disease in the United States, accounting for about half of the patients entering dialysis each year.

Diabetic nephropathy occurs in only approximately one third (20–40 %) of patients with diabetes mellitus, generally 15–20 years after diagnosis. A significant genetic component must be at least part of the explanation as to why only some patients with diabetes mellitus develop nephropathy.

Characteristic lesions can be seen in glomeruli but there are also concomitant vascular alterations and secondary tubular interstitial alterations, all combining to lead to renal failure in many of these patients.

Morphological findings in diabetes mellitus can be pathognomonic or rather nonspecific. The latter most typically happens in early cases but can also occur in situations where diabetic changes are found concomitantly with morphological manifestations of other superimposed disorders, mostly glomerulopathies.

The differential diagnosis of nodular glomerulosclerosis, the classical glomerular lesion seen in well-established diabetic nephropathy, includes a number of other similar glomerulopathies that share similar pathogenetic molecular mechanisms, though their etiology is completely different. Recognition of these entities is imperative to avoid making the wrong assessment and/or delaying diagnosis.

The present chapter addresses the morphological expressions of type 1 and 2 diabetes mellitus in the renal parenchyma with emphasis on structural changes that take place, pathology, differential diagnosis, pathogenesis, and clinical correlations.

It also emphasizes underlying molecular events responsible for the pathological abnormalities to be able to understand why other totally different disorders may share morphological similarities. Future therapeutic interventions will likely take advantage of our more sophisticated understanding of the pathogenesis of diabetic nephropathy. Finally, the chapter attempts to correlate pathological findings with clinical manifestations, progression, and ultimately, prognosis. Other disorders that may exist concomitantly in a given case that may alter the morphological and clinical manifestations will also be discussed to provide a rather comprehensive view of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol. 1936;12:83–98.7.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Murakami R. Beitrag zur Kenntnis der Veränderung des Nierenkörperchens beim Diabetes mellitus. Trans Jpn Pathol Soc. 1936;26:657–64.

    Google Scholar 

  3. Gellman DD, Pirani CL, Soothill JF, Muehrcke RC, Kark RM. Diabetic nephropathy: a clinical and pathologic study based on renal biopsies. Medicine (Baltimore). 1959;38:321–67.

    CAS  Google Scholar 

  4. Dalla Vestra M, Saller A, Mauer M, Fioretto P. Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol. 2001;14 Suppl 4:S51–7.

    PubMed  Google Scholar 

  5. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes. 1973;22:706–12.

    CAS  PubMed  Google Scholar 

  6. Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51:1580–7.

    Article  CAS  PubMed  Google Scholar 

  7. Dalla Vestra M, Saller A, Bortoloso E, Mauer M, Fioretto P. Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab. 2000;26 Suppl 4:8–14.

    CAS  PubMed  Google Scholar 

  8. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74:1143–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ritz E, Zeng XX, Rychlik I. Clinical manifestation and natural history of diabetic nephropathy. Contrib Nephrol. 2011;170:19–27.

    Article  PubMed  Google Scholar 

  10. Ritz E. Diabetic nephropathy. Saudi J Kidney Dis Transpl. 2006;17:481–90.

    PubMed  Google Scholar 

  11. Ellis EN, Warady BA, Wood EG, et al. Renal structural-functional relationships in early diabetes mellitus. Pediatr Nephrol. 1997;11:584–91.

    Article  CAS  PubMed  Google Scholar 

  12. Jeansson M, Granqvist AB, Nystrom JS, Haraldsson B. Functional and molecular alterations of the glomerular barrier in long-term diabetes in mice. Diabetologia. 2006;49:2200–9.

    Article  CAS  PubMed  Google Scholar 

  13. Flyvbjerg A. Inhibition and reversibility of renal changes: lessons from diabetic kidney disease. Acta Paediatr Suppl. 2006;95:83–92.

    Article  PubMed  Google Scholar 

  14. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius 3rd FC. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes. 2008;57:1439–45.

    Article  CAS  PubMed  Google Scholar 

  15. Osterby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving HH. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36:1064–70.

    Article  CAS  PubMed  Google Scholar 

  16. Dische FE. Measurement of glomerular basement membrane thickness and its application to the diagnosis of thin-membrane nephropathy. Arch Pathol Lab Med. 1992;116:43–9.

    CAS  PubMed  Google Scholar 

  17. Haas M. Alport syndrome and thin glomerular basement membrane nephropathy: a practical approach to diagnosis. Arch Pathol Lab Med. 2009;133:224–32.

    PubMed  Google Scholar 

  18. Nasr SH, Markowitz GS, Valeri AM, Yu Z, Chen L, D’Agati VD. Thin basement membrane nephropathy cannot be diagnosed reliably in deparaffinized, formalin-fixed tissue. Nephrol Dial Transplant. 2007;22:1228–32.

    Article  PubMed  Google Scholar 

  19. Najafian B, Alpers CE, Fogo AB. Pathology of human diabetic nephropathy. Contrib Nephrol. 2011;170:36–47.

    Article  PubMed  Google Scholar 

  20. Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev. 2008;4:39–45.

    Article  CAS  PubMed  Google Scholar 

  21. Stout LC, Kumar S, Whorton EB. Focal mesangiolysis and the pathogenesis of the Kimmelstiel-Wilson nodule. Hum Pathol. 1993;24:77–89.

    Article  CAS  PubMed  Google Scholar 

  22. Wada T, Shimizu M, Yokoyama H, et al. Nodular lesions and mesangiolysis in diabetic nephropathy. Clin Exp Nephrol. 2013;17:3–9.

    Article  PubMed  Google Scholar 

  23. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.

    Article  PubMed  Google Scholar 

  24. Matsusaka T, Xin J, Niwa S, et al. Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J Am Soc Nephrol. 2005;16:1013–23.

    Article  CAS  PubMed  Google Scholar 

  25. Stout LC, Kumar S, Whorton EB. Insudative lesions—their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum Pathol. 1994;25:1213–27.

    Article  CAS  PubMed  Google Scholar 

  26. Alsaad KO, Herzenberg AM. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol. 2007;60:18–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract. 1980;167:204–16.

    Article  CAS  PubMed  Google Scholar 

  28. Mauer SM, Sutherland DE, Steffes MW. Relationship of systemic blood pressure to nephropathology in insulin-dependent diabetes mellitus. Kidney Int. 1992;41:736–40.

    Article  CAS  PubMed  Google Scholar 

  29. Fioretto P, Steffes MW, Sutherland DE, Mauer M. Sequential renal biopsies in insulin-dependent diabetic patients: structural factors associated with clinical progression. Kidney Int. 1995;48:1929–35.

    Article  CAS  PubMed  Google Scholar 

  30. Caramori ML, Kim Y, Huang C, et al. Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes. 2002;51:506–13.

    Article  CAS  PubMed  Google Scholar 

  31. Perrin NE, Torbjornsdotter TB, Jaremko GA, Berg UB. The course of diabetic glomerulopathy in patients with type I diabetes: a 6-year follow-up with serial biopsies. Kidney Int. 2006;69:699–705.

    Article  CAS  PubMed  Google Scholar 

  32. Caramori ML, Parks A, Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol. 2013;24:1175–81.

    Article  CAS  PubMed  Google Scholar 

  33. Teiken JM, Audettey JL, Laturnus DI, Zheng S, Epstein PN, Carlson EC. Podocyte loss in aging OVE26 diabetic mice. Anat Rec (Hoboken). 2008;291:114–21.

    Article  PubMed  Google Scholar 

  34. Bohle A, Wehrmann M, Bogenschutz O, Batz C, Muller CA, Muller GA. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract. 1991;187:251–9.

    Article  CAS  PubMed  Google Scholar 

  35. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14:1358–73.

    Article  CAS  PubMed  Google Scholar 

  36. Pichaiwong W, Hudkins KL, Wietecha T, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol. 2013;24:1088–102.

    Article  CAS  PubMed  Google Scholar 

  37. Berg UB, Torbjornsdotter TB, Jaremko G, Thalme B. Kidney morphological changes in relation to long-term renal function and metabolic control in adolescents with IDDM. Diabetologia. 1998;41:1047–56.

    Article  CAS  PubMed  Google Scholar 

  38. Tamsma JT, van den Born J, Bruijn JA, et al. Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia. 1994;37:313–20.

    Article  CAS  PubMed  Google Scholar 

  39. Rossi M, Morita H, Sormunen R, et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 2003;22:236–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. van den Born J, Pisa B, Bakker MA, et al. No change in glomerular heparan sulfate structure in early human and experimental diabetic nephropathy. J Biol Chem. 2006;281:29606–13.

    Article  PubMed  Google Scholar 

  41. Nerlich A, Schleicher E. Immunohistochemical localization of extracellular matrix components in human diabetic glomerular lesions. Am J Pathol. 1991;139:889–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Adler SG, Feld S, Striker L, et al. Glomerular type IV collagen in patients with diabetic nephropathy with and without additional glomerular disease. Kidney Int. 2000;57:2084–92.

    Article  CAS  PubMed  Google Scholar 

  43. Truong LD, Pindur J, Barrios R, et al. Tenascin is an important component of the glomerular extracellular matrix in normal and pathologic conditions. Kidney Int. 1994;45:201–10.

    Article  CAS  PubMed  Google Scholar 

  44. Tsilibary EC. Microvascular basement membranes in diabetes mellitus. J Pathol. 2003;200:537–46.

    Article  CAS  PubMed  Google Scholar 

  45. Turbat-Herrera EA. Overview of models for the study of renal disease. In: Herrera GA, editor. Experimental models of renal diseases: pathogenesis and diagnosis, Contributions to nephrology series, vol. 169. Basel: S Karger AG; 2011. p. 1–5.

    Google Scholar 

  46. Loy A, Lurie KG, Ghosh A, Wilson JM, MacGregor LC, Matschinsky FM. Diabetes and the myo-inositol paradox. Diabetes. 1990;39:1305–12.

    Article  CAS  PubMed  Google Scholar 

  47. Alpers CE, Hudkins KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens. 2011;20:278–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Breyer MD, Bottinger E, Brosius III FC, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2005;16:27–45.

    Article  PubMed  Google Scholar 

  49. Chevalier J, Masurier C, Lavaud S, Michel O, Bariety J. Approach of cellular mechanisms of glomerulosclerosis in a model of accelerated aging the obese Zucker rat. C R Seances Soc Biol Fil. 1995;189:987–1007.

    CAS  PubMed  Google Scholar 

  50. Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes. 2003;52:1031–5.

    Article  CAS  PubMed  Google Scholar 

  51. Regoli M, Bendayan M. Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia. 1997;40:15–22.

    Article  CAS  PubMed  Google Scholar 

  52. Phillips A, Janssen U, Floege J. Progression of diabetic nephropathy. Insights from cell culture studies and animal models. Kidney Blood Press Res. 1999;22:81–97.

    Article  CAS  PubMed  Google Scholar 

  53. Gassler N, Elger M, Kranzlin B, et al. Podocyte injury underlies the progression of focal segmental glomerulosclerosis in the fa/fa Zucker rat. Kidney Int. 2001;60:106–16.

    Article  CAS  PubMed  Google Scholar 

  54. Wada J, Sun L, Kanwar YS. Discovery of genes related to diabetic nephropathy in various animal models by current techniques. In: Herrera GA, editor. Experimental models of renal diseases: pathogenesis and diagnosis, Contributions to nephrology series, vol. 159. Basel: S Karger AG; 2011. p. 161–74.

    Google Scholar 

  55. Anjaneyulu M, Chopra K. Nordihydroguairetic acid, a lignin, prevents oxidative stress and the development of diabetic nephropathy in rats. Pharmacology. 2004;72:42–50.

    Article  CAS  PubMed  Google Scholar 

  56. Alpers CE, Biava CG. Idiopathic lobular glomerulonephritis (nodular mesangial sclerosis): a distinct diagnostic entity. Clin Nephrol. 1989;32:68–74.

    CAS  PubMed  Google Scholar 

  57. Herzenberg AM, Holden JK, Singh S, Magil AB. Idiopathic nodular glomerulosclerosis. Am J Kidney Dis. 1999;34:560–4.

    Article  CAS  PubMed  Google Scholar 

  58. Markowitz GS, Lin J, Valeri AM, Avila C, Nasr SH, D’Agati VD. Idiopathic nodular glomerulosclerosis is a distinct clinicopathologic entity linked to hypertension and smoking. Hum Pathol. 2002;33:826–35.

    Article  PubMed  Google Scholar 

  59. Sharma SG, Bomback AS, Radhakrishnan J, Herlitz LC, Stokes MB, Markowitz GS, D’Agati VD. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol. 2013;8:1718–24.

    Article  PubMed  Google Scholar 

  60. Jim B, Santos J, Spath F, Cijiang He J. Biomarkers of diabetic nephropathy, the present and the future. Curr Diabetes Rev. 2012;8:317–28.

    Article  CAS  PubMed  Google Scholar 

  61. Miyata T, Suzuki N, de Strihou VY. Diabetic nephropathy: are there new and potentially promising therapies targeting oxygen biology? Kidney Int. 2013;84:693–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo A. Herrera M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aufman, J., Herrera, G.A. (2014). Renal Structural Changes in Type 1 and 2 Diabetes Mellitus: Pathology, Pathogenesis, and Clinical Correlations. In: Lerma, E., Batuman, V. (eds) Diabetes and Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0793-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0793-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0792-2

  • Online ISBN: 978-1-4939-0793-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics