Skip to main content

Acoustic Emission

  • Chapter
Springer Handbook of Acoustics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Acoustic emission (AE) originates from mechanical deformation and fracture, as well as from phase transformation, corrosion, friction, and magnetic processes. It refers to the generation of transient elastic waves due to the rapid release of energy from a localized source or sources within a material or structure. It is an indispensable and effective nondestructive inspection method and a valuable tool of materials research, detecting dynamic microscopic processes of materials. Sensors attached to the structure detect AE signals, from which the locations and activity levels of the sources are evaluated, and structural integrity is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AE:

acoustic emission

ASTM:

American Society for Testing and Materials

CNG:

compressed natural gas

COPV:

composite overwrapped pressure vessel

FEA:

finite-element analysis

FFT:

fast Fourier transform

FR:

felicity ratios

LNG:

liquefied natural gas

S0 mode:

zeroth order symmetric Lamb mode

SCBA:

self contained breathing apparatus

rms:

root mean square

References

  1. R.K. Miller, E.V.K. Hill (Eds.): Acoustic Emission Testing, Nondestructive Testing Handbook Vol. 6, 3rd edn. (American Society for Nondestructive Testing, Columbus 2005)

    Google Scholar 

  2. H.R. Hardy Jr.: Acoustic Emission/Microseismic Activity, Vol. 1: Principles, Techniques and Geotechnical Applications (Balkema, Lisse 2003)

    Book  Google Scholar 

  3. C.U. Grosse, L.M. Linzer: Signal-based acoustic emission analysis. In: Acoustic Emission Testing, Basics for Research – Applications in Civil Engineering, ed. by C.U. Grosse, M. Ohtsu (Springer, Berlin, Heidelberg 2008) pp. 53–99, Chap. 5

    Google Scholar 

  4. C.U. Grosse, M. Ohtsu: Moment tensor analysis. In: Acoustic Emission Testing, Basics for Research – Applications in Civil Engineering, ed. by C.U. Grosse, M. Ohtsu (Springer, Berlin, Heidelberg 2008) pp. 175–200, Chap. 8

    Google Scholar 

  5. G. Manthei, J. Eisenblätter: Acoustic emission in study of rock stability. In: Acoustic Emission Testing, Basics for Research – Applications in Civil Engineering, ed. by C.U. Grosse, M. Ohtsu (Springer, Berlin, Heidelberg 2008) pp. 239–310, Chap. 11

    Google Scholar 

  6. J.H. Kurz, S. Köppel, L. Linzer, B. Schechinger, C.U. Grosse: Source localization. In: Acoustic Emission Testing, Basics for Research – Applications in Civil Engineering, ed. by C.U. Grosse, M. Ohtsu (Springer, Berlin, Heidelberg 2008) pp. 101–147, Chap. 6

    Google Scholar 

  7. T. Kishi, M. Ohtsu, S. Yuyama (Eds.): Acoustic Emission – Beyond the Millenium (Elsevier, Amsterdam 2000)

    Google Scholar 

  8. M.R. Gorman: Acoustic emission in structural health monitoring (SHM). In: Encyclopedia of Structural Health Monitoring, ed. by C. Boller, F.-K. Chang, Y. Fujino (Wiley, Hoboken 2009) pp. 79–100, Chap. 4

    Google Scholar 

  9. M. Ohtsu, K. Ono: A generalized theory of acoustic emission and Greenʼs function in a half space, J. Acoust. Emiss. 3, 27–40 (1984)

    ADS  Google Scholar 

  10. M. Ohtsu, K. Ono: The generalized theory and source representations of acoustic emission, J. Acoust. Emiss. 5, 124–133 (1986)

    ADS  Google Scholar 

  11. S. Shrivastava, R. Prakash: Assessment of bone condition by acoustic emission technique: A review, J. Biomed. Sci. Eng. 2, 144–154 (2009)

    Article  Google Scholar 

  12. H. Chen: Discovery of Acoustic Emission Based Biomarker for Quantitative Assessment of Knee Joint Ageing and Degeneration. Ph.D. Thesis (University of Central Lancashire, Preston 2011)

    Google Scholar 

  13. M. Browne, A. Roques, A. Taylor: The acoustic emission technique in orthopaedics: A review, J. Strain Anal. Eng. 40(1), 59–79 (2005)

    Article  Google Scholar 

  14. C.D. Arvanitis, M.S. Livingstone, N. Vykhodtseva, N. McDannold: Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring, PLoS ONE 7(9), e45783 (2012)

    Article  ADS  Google Scholar 

  15. K.B. Chandren, L.F Mockros, J.M. Fildes, K.B. Chandran, M.J. Vonesh, D.D. McPherson, A. Nagaraj, C. Davidson: Vascular acoustic emission analysis in a balloon angioplasty system, US Patent 5957950 (1999)

    Google Scholar 

  16. D.G. Aggelis, N.K. Paschos, N.M. Barkoula, A.S. Paipetis, T.E. Matikas, A.D. Georgoulis: Rupture of anterior cruciate ligament monitored by acoustic emission, J. Acoust. Soc. Am. 129(6), EL217–222 (2011)

    Article  Google Scholar 

  17. K. Ono: Current understanding of mechanisms of acoustic emission, J. Strain Anal. Eng. 40(1), 1–15 (2005)

    Article  Google Scholar 

  18. K. Ono: Acoustic emission in materials research – A review, J. Acoust. Emiss. 29, 284–308 (2011)

    Google Scholar 

  19. A. Khan-Edmundson, G.W. Rodgers, T.B.F. Woodfield, G.J. Hooper, J.G. Chase: Tissue attenuation characteristics of acoustic emission signals for wear and degradation of total hip arthoplasty implants, 8th IFAC Symp. Biol. Med. Syst. (BMS12), Biol. Med. Syst. 8(1), 355–360 (2012)

    Google Scholar 

  20. K. Ono: Application of acoustic emission for structure diagnosis, Proc. 56 Sci. Conf., Kielce-Krynica (PAN, Warsaw 2010) pp. 317–341

    Google Scholar 

  21. M.A. Hamstad, A. OʼGallagher, J. Gary: Modeling of buried monopole and dipole sources of acoustic emission with a finite element technique, J. Acoust. Emiss. 17, 97–110 (1999)

    Google Scholar 

  22. M.A. Hamstad: Some observations on Rayleigh waves and acoustic emission in thick steel plates, J. Acoust. Emiss. 27, 114–136 (2009)

    Google Scholar 

  23. M. Sause: Identification of Failure Mechanisms in Hybrid Materials Utilizing Pattern Recognition Techniques Applied to Acoustic Emission Signals. Augsburg Univ. Dissertation (Mensch und Buch, Berlin 2010)

    Google Scholar 

  24. M.G.R. Sause, S. Horn: Simulation of Lamb wave excitation for different elastic properties and acoustic emission source geometries, J. Acoust. Emiss. 28, 142–154 (2010)

    Google Scholar 

  25. K. Ono, Q. Huang: Pattern recognition analysis of acoustic emission signals, Progress in Acoustic Emission VII, ed. by T. Kishi, Y. Mori, M. Enoki (Jpn. Soc. Non-Destructive Inspection, Tokyo 1994) pp. 69–78

    Google Scholar 

  26. W.H. Prosser: Advanced AE techniques in composite materials research, J. Acoust. Emiss. 14, S1–S11 (1996)

    Google Scholar 

  27. K. Ono, A. Gallego: Attenuation of Lamb waves in CFRP plates, J. Acoust. Emiss. 30, 109–121 (2012)

    Google Scholar 

  28. H.N.G. Wadley, C.B. Scruby: Acoustic emission source characterization, Proc. Int. Conf. Acoust. Emiss. (Dunhart, Knoxville 1981) pp. 125–153

    Google Scholar 

  29. D.J. Buttle, C.B. Scruby: Characterization of fatigue of aluminum alloys by acoustic emission. Part I, J. Acoust. Emiss. 9, 243–254 (1990)

    Google Scholar 

  30. D.J. Buttle, C.B. Scruby: Characterization of fatigue of aluminum alloys by acoustic emission. Part II, J. Acoust. Emiss. 9, 255–270 (1990)

    Google Scholar 

  31. M. Takemoto, H. Nishino, K. Ono: Wavelet transform – Applications to AE signal analysis. In: Acoustic Emission – Beyond the Millenium (Elsevier, Amsterdam 2000) pp. 35–56

    Google Scholar 

  32. H. Suzuki, M. Takemoto, K. Ono: The fracture dynamics in a dissipative glass-fiber/epoxy model composite with AE source simulation analysis, J. Acoust. Emiss. 14, 35–50 (1996)

    Google Scholar 

  33. M. Ohtsu, T. Isoda, Y. Tomoda: Acoustic emission techniques standardized for concrete structures, J. Acoust. Emiss. 25, 21–32 (2007)

    Google Scholar 

  34. F. Breckenridge, C. Tscheigg, M. Greenspan: Acoustic emission: Some applications of Lambʼs problem, J. Acoust. Soc. Am. 57, 626–631 (1975)

    Article  ADS  Google Scholar 

  35. F.R. Breckenridge: Acoustic emission transducer calibration by means of the seismic surface pulse, J. Acoust. Emiss. 1(2), 87–94 (1982)

    Google Scholar 

  36. N. Hsu: Acoustic emission simulator, US Patent 4018084 (1975)

    Google Scholar 

  37. G.C. McLaskey, S.D. Glaser: Acoustic emission sensor calibration for absolute source measurements, J. Nondestruct. Eval. 31, 157–168 (2012)

    Article  Google Scholar 

  38. T. Proctor: An improved piezoelectric acoustic emission transducer, J. Acoust. Soc. Am. 71, 1163–1168 (1982)

    Article  ADS  Google Scholar 

  39. A. Anastasopoulos: Pattern recognition techniques for acoustic emission based condition assessment of unfired pressure vessels, J. Acoust. Emiss. 23, 318–330 (2005)

    Google Scholar 

  40. T.J. Fowler: Acoustic emission testing of chemical industry vessels, Progress in Acoustic Emission II, ed. by M. Onoe, K. Yamaguchi, H. Takahashi (Jpn. Soc. Non-Destructive Inspection, Tokyo 1984) pp. 421–449

    Google Scholar 

  41. T.J. Fowler: Chemical industry applications of acoustic emission, Mater. Eval. 50, 875–882 (1992)

    Google Scholar 

  42. D.E. Kosnik, T. Hopwood, D.J. Corr: Acoustic emission monitoring for assessment of steel bridge details, AIP Conf. Proc. 1335, 1410–1417 (2011)

    Article  ADS  Google Scholar 

  43. D. McColskey, M. Hamstad, R. Saulsberry, J. Waller: Production/performance monitoring of composite tanks NDE methods for certification and production/performance monitoring of composite tanks, Int. Hydrogen Fuel Press. Vessel Forum, Beijing (2010), available online at http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/ihfpv\USmccloseky.pdf

  44. M. Ge: Analysis of source location algorithms, Part I, J. Acoust. Emiss. 21, 14–28 (2003)

    Google Scholar 

  45. M. Ge: Analysis of source location algorithms, Part II, J. Acoust. Emiss. 21, 29–51 (2003)

    Google Scholar 

  46. M.R. Gorman, W.H. Prosser: AE source orientation by plate wave analysis, J. Acoust. Emiss. 9, 283–288 (1990)

    Google Scholar 

  47. K.M. Holford, D.C. Carter: Acoustic emission source location, Key Eng. Mater. 167/168, 162–171 (1999)

    Article  Google Scholar 

  48. L. Wang, F.G. Yuan: Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments, Compos. Sci. Technol. 67, 1370–1384 (2007)

    Article  Google Scholar 

  49. T.J. Fowler, J.A. Blessing, P.J. Conlisk, T.L. Swanson: The MONPAC system, J. Acoust. Emiss. 8, 1–10 (1989)

    Google Scholar 

  50. C.R. Heiple, S.H. Carpenter: Acoustic emission produced by deformation of metals and alloys – A review, Part I, J. Acoust. Emiss. 6, 177–204 (2012)

    Google Scholar 

  51. C.R. Heiple, S.H. Carpenter: Acoustic emission produced by deformation of metals and alloys – A review, Part II, J. Acoust. Emiss. 6, 215–229 (2012)

    Google Scholar 

  52. S.H. Carpenter, C. Pfleiderer: Acoustic emission from AISI 4340 steel as a function of strength, J. Acoust. Emiss. 12, 141–148 (1994)

    Google Scholar 

  53. I. Roman, H.B. Teoh, K. Ono: Thermal restoration of burst emissions in A533B steel, J. Acoust. Emiss. 3(1), 19–26 (1984)

    Google Scholar 

  54. A. Vinogradov, V. Patlan, S. Hashimoto: Spectral analysis of acoustic emission during cyclic deformation of copper single crystals, Philos. Mag. A 81, 1427–1446 (2001)

    Article  ADS  Google Scholar 

  55. A. Vinogradov, D.L. Merson, V. Patlan, S. Hashimoto: Effect of solid solution hardening and stacking fault energy on plastic flow and acoustic emission in Cu-Ge alloys, Mater. Sci. Eng. A 341, 57–73 (2003)

    Article  Google Scholar 

  56. H.B. Teoh, K. Ono: Fracture-induced acoustic emission during slow bend tests of A533B steel, J. Acoust. Emiss. 6(1), 1–18 (1987)

    Google Scholar 

  57. A. Yonezu, T. Ogawa, M. Takemoto: Fatigue fracture dynamics of high strength steel studied by acoustic emission technique, Progress in Acoustic Emission XIII (Jpn. Soc. Non-Destructive Inspection, Tokyo 2006) pp. 463–470

    Google Scholar 

  58. N. Nemati: Acoustic Emission Assessment of Steel Bridge Details Subjected to Fatigue. Ph.D. Thesis (University of Miami, Miami 2012)

    Google Scholar 

  59. K. Ono, A. Gallego: Research and applications of AE on advanced composites, J. Acoust. Emiss. 30, 180–229 (2012)

    Google Scholar 

  60. J.W. Whittaker, W.D. Brosey, M.A. Hamstad: Correlation of felicity ratio and strength behavior of impact-damaged spherical composite test specimens, J. Acoust. Emiss. 9, 84–90 (1990)

    Google Scholar 

  61. B.D. Thompson, R.P. Young, D.A. Lockner: Fracture in westerly granite under AE feedback and constant strain rate loading: Nucleation, quasi-static propagation, and the transition to unstable fracture propagation. In: Rock Damage and Fluid Transport – Part I, ed. by G. Dresen, O. Stephansson, A. Zang (Birkhäuser, Basel 2006) pp. 995–1019

    Chapter  Google Scholar 

  62. M. Takemoto, H. Cho: Acoustic emission during stress corrosion cracking test, 26th Eur. Conf. Acoust. Emiss. Test. (Deutsche Gesellschaft für Zerstörungsfreie Prüfung, Berlin 2004) pp. 511–518, Lecture 51

    Google Scholar 

  63. A. Yonezu, H. Cho, M. Takemoto: AE for susceptibility evaluation of type 304 steel to polythionic acid stress corrosion cracking, Progress in Acoustic Emission XVIII (Jpn. Soc. Non-Destructive Inspection, Tokyo 2006) pp. 489–496

    Google Scholar 

  64. K. Kageyama, T. Ogawa, A. Yonezu, H. Cho, M. Takemoto: AE and corrosion potential fluctuation (CPF) for environmental assisted fracture, J. Acoust. Emiss. 24, 127–138 (2006)

    Google Scholar 

  65. A.T. Green, C.S. Lockman, H.K. Haines: Acoustic verification of structural integrity of polaris chambers, Mod. Plast. 41(11), 137–139 (1964)

    Google Scholar 

  66. ASME Boiler, Pressure Vessel Committee Section V: Nondestructive Examination, Subcommittee on Fiber Reinforced Plastic Pressure Vessels, 2004 Edition with subsequent addenda (ASME, New York 2004)

    Google Scholar 

  67. N.L. Newhouse, G.B. Rawls, M.D. Rana, B.F. Shelley, M.R. Gorman: Development of ASME Section X code rules for high pressure composite hydrogen pressure vessels with non-load sharing liners, Proc. 2010 ASME Press. Vess. Pip. Conf., PVP 2010 (ASME, New York 2010) p. 10, Paper No. PVP2010-25349

    Google Scholar 

  68. ASME Boiler and Pressure Vessel Code, Section X, Fiber-reinforced Plastic Pressure Vessels, Mandatory Appendix 8-620 and NB10-0601 (ASME, New York 2012), Suppl. 9

    Google Scholar 

  69. M.R. Gorman: Modal AE analysis of fracture and failure in composite materials, and the quality and life of high pressure composite pressure vessels, J. Acoust. Emiss. 29, 1–28 (2011)

    Google Scholar 

  70. R.L. Moore, M.A. Hamstad, T.T. Chiao: Stress-rupture behavior of graphite fiber/epoxy strands, Compos. Mater. Struct. 3, 19–23 (1974)

    Google Scholar 

  71. Orbiter Kevlar/Epoxy Composite Overwrapped Pressure Vessel Flight Rationale Technical Assessment Report, Vols. I and II, NASA NESC Rep. RP-07-34 (2007)

    Google Scholar 

  72. J.B. Chang: Implementation Guidelines for ANSI/AIAA S-081: Space Systems Composite Overwrapped Pressure Vessels, Aerospace Rep. TR-2003(8504)-1, AD A413531 (2003)

    Google Scholar 

  73. S.E. Groves, S.J. DeTeresa, R.J. Sanchez, M.A. Zocher, R.M. Christensen: Accelerated Stress Rupture Lifetime Assessment for Fiber Composites, UCRL-ID-126454 (1997)

    Google Scholar 

  74. M. Takemoto, H. Cho, H. Suzuki: Lamb-wave acoustic emission for condition monitoring of tank bottom plates, J. Acoust. Emiss. 24, 12–21 (2006)

    Google Scholar 

  75. Monpac Technology issue, J. Acoust. Emiss. 8(3), 1–34 (1989)

    Google Scholar 

  76. G. Lackner, P. Tscheliesnig: Field testing of flat bottomed storage tanks with acoustic emission – A review on the gained experience, J. Acoust. Emiss. 22, 201–207 (2004)

    Google Scholar 

  77. F.A. Leone Jr., D. Ozevin, V. Godinez, B. Mosinyi, J.G. Bakuckas Jr., J. Awerbuch, A. Lau, T.-M. Tan: Acoustic emission analysis of full-scale honeycomb sandwich composite curved fuselage panels, Proc. SPIE 6934, 1–16 (2008)

    Google Scholar 

  78. N. Takeda, S. Minakuchi: Recent development of structural health monitoring technologies for aircraft composite structures in Japan, Proc. 17th Int. Conf. Compos. Mater. (ICCM-17), Edinburgh (2009)

    Google Scholar 

  79. P. Cawley, M.J.S. Lowe, D.N. Alleyne, B. Pavlakovic, P. Wilcox: Practical long range guided wave testing: Application to pipes and rail, Mater. Eval. 61(1), 66–74 (2003)

    Google Scholar 

  80. T. Clarke, P. Cawley: Enhancing the defect localization capability of a guided wave SHM system applied to a complex structure, Struct. Health Monitor. 10(3), 247–259 (2010)

    Article  Google Scholar 

  81. H. Niitsuma: Acoustic emission/microseismic technique: Review of research in the 20th century and future aspects. In: Acoustic Emission – Beyond the Millenium (Elsevier, Amsterdam 2000) pp. 109–125

    Google Scholar 

  82. A. Lavrov: The Kaiser effect in rocks: Principles and stress estimation techniques, Int. J. Rock Mech. Min. Sci. 40, 151–171 (2003)

    Article  Google Scholar 

  83. J.A. Cavaco: Measures taken to mitigate the effects of fatigue on critical railway bridges at Canadian National, Bridge Struct. 3(1), 51–66 (2007)

    Article  Google Scholar 

  84. D.R. Hay, J.A. Cavaco, V. Mustafa: Monitoring the civil infrastructure with acoustic emission: Bridge case studies, J. Acoust. Emiss. 27, 1–10 (2009)

    Google Scholar 

  85. A. Nair, S.S. Cai: Acoustic emission monitoring of bridges: Review and case studies, Eng. Struct. 32, 1704–1714 (2010)

    Article  Google Scholar 

  86. M.B. Johnson, D. Ozevin, G.A. Washer, K. Ono, R.S. Gostautas, T.A. Tamutus: Real time steel fatigue crack detection in eyebar using acoustic emission method, J. Transp. Res. Board 2313, 72–79 (2012)

    Article  Google Scholar 

  87. C. Allevato: The use of acoustic emission testing on long term monitoring of damaged component, Proc. EWGAE 2010, 29th Eur. Conf. Acoust. Emiss. Test. (TÜV, Vienna 2010) pp. 34–39

    Google Scholar 

  88. P. Tscheliesnig: Thirty years experience of industrial applications of acoustic emission testing at TÜV Austria, J. Acoust. Emiss. 25, 276–285 (2007)

    Google Scholar 

  89. J.M. Rodgers: Acoustic emission testing of seam-welded high energy piping systems in fossil power plants, J. Acoust. Emiss. 25, 286–293 (2007)

    Google Scholar 

  90. D. Papasalouros, N. Tsopelas, A. Anastasopoulos, D. Kourousis, D.J. Lekou, F. Mouzakis: Acoustic emission monitoring of composite blade of NM48/750 NEG-MICON wind turbine, J. Acoust. Emiss. 31, 36–49 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanji Ono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Ono, K. (2014). Acoustic Emission. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_30

Download citation

Publish with us

Policies and ethics