Skip to main content

Modeling Three-Dimensional Avascular Tumor Growth Using Lattice Gas Cellular Automata

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

We model and simulate avascular tumor growth in three dimensions using lattice gas cellular automata (LGCA). Our 3D models are an advance over current state-of-the-art where most three dimensional (3D) models are in fact only a series of two dimensional models simulated to give an appearance of a 3D model. In our 3D model, we use binary description of cells and their states for computational speed and efficiency. The fate and distribution of cells in our model are determined by the Lattice–Boltzmann energy. We simulate our model in a comparable size of lattice and show that the findings are in good agreement with biological tumor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolfgang A (2007) Molecular biology of human cancers. Springer, Dordrecht

    Google Scholar 

  2. Shrestha SMB, Joldes G, Wittek A, Miller K (2012) Modeling heterogeneous tumor growth using hybrid cellular automata. In: Nielsen PMF, Wittek A, Miller K (eds) Computational biomechanics for medicine. Springer, New York, pp 129–139

    Chapter  Google Scholar 

  3. Shrestha SMB, Joldes GR, Wittek A, Miller K (2013) Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours. Int J Numer Meth Biomed Eng 29(4):542–559

    Article  Google Scholar 

  4. Qi A-S, Zheng X, Du C-Y, An B-S (1993) A cellular automaton model of cancerous growth. J Theoret Biol 161(1):1–12

    Google Scholar 

  5. Vermeulen L, Todaro M, de Sousa MF, Sprick M, Kemper K, Alea MP, Richel D, Stassi G, Medema J (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci 105(36):13427–13432

    Article  Google Scholar 

  6. Deutsch A, Dormann S, Maini PK (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Springer, Berlin

    Google Scholar 

  7. Kansal A, Torquato S, Harsh G, Chiocca E, Deisboeck T (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theoret Biol 203(4):367–382

    Article  Google Scholar 

  8. Sciumè G (2013) A multiphase model for three-dimensional tumor growth. New J Phys 15(1):015005

    Article  Google Scholar 

  9. Frieboes HB, Jin F, Chuang Y-L, Wise SM, Lowengrub JS, Cristini V (2010) Three-dimensional multispecies nonlinear tumor growth—II: tumor invasion and angiogenesis. J Theoret Biol 264(4):1254–1278

    Article  MathSciNet  Google Scholar 

  10. Potts RB (1952) Some generalized order–disorder transformations. In: Proceedings of the Cambridge Philosophical Society. Cambridge University Press, Cambridge

    Google Scholar 

  11. Hardy J, De Pazzis O, Pomeau Y (1976) Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys Rev A 13(5):1949

    Article  Google Scholar 

  12. Chopard B, Droz M (1998) Cellular automata modeling of physical systems, vol 122. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol 2(3):393–406

    Google Scholar 

  14. Weimar JR (1997) Simulation with cellular automata. Logos, Berlin

    Google Scholar 

  15. Rubenstein BM, Kaufman LJ (2008) The role of extracellular matrix in glioma invasion: a cellular potts model approach. Biophys J 95(12):5661–5680

    Article  Google Scholar 

  16. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69(13):2013–2016

    Article  Google Scholar 

  17. Wu FY (1982) The potts model. Rev Mod Phys 54(1):235

    Article  Google Scholar 

  18. Gering D, Nabavi A, Kikinis R, Grimson WE, Hata N, Everett P, Jolesz F, Wells W (1999) An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. In: Taylor C, Colchester A (eds) Medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg, pp 809–819

    Chapter  Google Scholar 

  19. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WEL, Jolesz FA, Black PM, Wells WM (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Res Imag 13(6):967–975

    Article  Google Scholar 

  20. Pieper S, Lorensen B, Schroeder W, Kikinis R (2006) The na-mic kit: Itk, vtk, pipelines, grids and 3d slicer as an open platform for the medical image computing community. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro

    Google Scholar 

  21. Mildenberger P, Eichelberg M, Martin E (2002) Introduction to the dicom standard. European Radiol 12(4):920–927

    Article  Google Scholar 

Download references

Acknowledgements

The first author was a SIRF scholar in Australia and was in receipt of the UIS scholarship during the completion of this research. The financial support of the National Health and Medical Research Council (Australia) Grant No. 1006031 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Shrestha, S.M.B., Joldes, G., Wittek, A., Miller, K. (2014). Modeling Three-Dimensional Avascular Tumor Growth Using Lattice Gas Cellular Automata. In: Doyle, B., Miller, K., Wittek, A., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0745-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0745-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0744-1

  • Online ISBN: 978-1-4939-0745-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics