Skip to main content

Abstract

Neonatal lupus is a model of passively acquired autoimmunity in which maternal anti-SSA/Ro antibodies cross the placenta and cause various clinical manifestations in the fetus. In this chapter we will describe the clinical manifestations with a focus on the most serious form of neonatal lupus: the cardiac manifestations, comprised of advanced block and occasionally disease that extends beyond the AV node. A review of the current models of pathophysiology will be discussed in addition to potential treatment and prevention options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Anti-TG:

Anti-thyroglobulin

Anti-TPO:

Anti-thyroperoxidase

CHB:

Congenital heart block

EFE:

Endocardial fibroelastosis

HCQ:

Hydroxychloroquine

La48:

48 kDa SSB/La

LTCC:

L-type cardiac calcium channels

MHC:

Major histocompatibility complex

NL:

Neonatal lupus

Ro52:

52 kDa SSA/Ro

Ro60:

60 kDa SSA/Ro

RRNL:

Research registry for neonatal lupus

SLE:

Systemic lupus erythematosus

SS:

Sjögren’s syndrome

UAS:

Undifferentiated autoimmune syndrome

References

  1. Laxer RM, Roberts EA, Gross KR, Britton JR, Cutz E, Dimmick J, et al. Liver disease in neonatal lupus erythematosus. J Pediatr. 1990;116(2):238–42.

    PubMed  CAS  Google Scholar 

  2. Watson R, Kang JE, May M, Hudak M, Kickler T, Provost TT. Thrombocytopenia in the neonatal lupus syndrome. Arch Dermatol. 1988;124(4):560–3.

    PubMed  CAS  Google Scholar 

  3. McCuistion CH, Schoch Jr EP. Possible discoid lupus erythematosus in newborn infant. Report of a case with subsequent development of acute systemic lupus erythematosus in mother. Arch Dermatol. 1983;119(7):615–8.

    PubMed  CAS  Google Scholar 

  4. Kephart DC, Hood AF, Provost TT. Neonatal lupus erythematosus: new serologic findings. J Invest Dermatol. 1981;77(3):331–3.

    PubMed  CAS  Google Scholar 

  5. McCue CM, Mantakas ME, Tingelstad JB, Ruddy S. Congenital heart block in newborns of mothers with connective tissue disease. Circulation. 1977;56(1):82–90.

    PubMed  CAS  Google Scholar 

  6. Chameides L, Truex RC, Vetter V, Rashkind WJ, Galioto Jr FM, Noonan JA. Association of maternal systemic lupus erythematosus with congenital complete heart block. N Engl J Med. 1977;297(22):1204–7.

    PubMed  CAS  Google Scholar 

  7. Scott JS, Maddison PJ, Taylor PV, Esscher E, Scott O, Skinner RP. Connective-tissue disease, antibodies to ribonucleoprotein, and congenital heart block. N Engl J Med. 1983;309(4):209–12.

    PubMed  CAS  Google Scholar 

  8. Reed BR, Lee LA, Harmon C, Wolfe R, Wiggins J, Peebles C, et al. Autoantibodies to SS-A/Ro in infants with congenital heart block. J Pediatr. 1983;103(6):889–91.

    PubMed  CAS  Google Scholar 

  9. Izmirly PM, Saxena A, Kim MY, Wang D, Sahl SK, Llanos C, et al. Maternal and fetal factors associated with mortality and morbidity in a multi-racial/ethnic registry of anti-SSA/Ro-associated cardiac neonatal lupus. Circulation. 2011;124(18):1927–35.

    PubMed  PubMed Central  Google Scholar 

  10. Sheth AP, Esterly NB, Ratoosh SL, Smith JP, Hebert AA, Silverman E. U1RNP positive neonatal lupus erythematosus: association with anti-La antibodies? Br J Dermatol. 1995;132(4):520–6.

    PubMed  CAS  Google Scholar 

  11. Jaeggi ET, Hornberger LK, Smallhorn JF, Fouron JC. Prenatal diagnosis of complete atrioventricular block associated with structural heart disease: combined experience of two tertiary care centers and review of the literature. Ultrasound Obstet Gynecol. 2005;26(1):16–21.

    PubMed  CAS  Google Scholar 

  12. Llanos C, Izmirly PM, Katholi M, Clancy RM, Friedman DM, Kim MY, et al. Recurrence rates of cardiac manifestations associated with neonatal lupus and maternal/fetal risk factors. Arthritis Rheum. 2009;60(10):3091–7.

    PubMed  PubMed Central  Google Scholar 

  13. Siren MK, Julkunen H, Kaaja R. The increasing incidence of isolated congenital heart block in Finland. J Rheumatol. 1998;25(9):1862–4.

    PubMed  CAS  Google Scholar 

  14. Brucato A, Frassi M, Franceschini F, Cimaz R, Faden D, Pisoni MP, et al. Risk of congenital complete heart block in newborns of mothers with anti-Ro/SSA antibodies detected by counterimmunoelectrophoresis: a prospective study of 100 women. Arthritis Rheum. 2001;44(8): 1832–5.

    PubMed  CAS  Google Scholar 

  15. Cimaz R, Spence DL, Hornberger L, Silverman ED. Incidence and spectrum of neonatal lupus erythematosus: a prospective study of infants born to mothers with anti-Ro autoantibodies. J Pediatr. 2003;142(6):678–83.

    PubMed  Google Scholar 

  16. Costedoat-Chalumeau N, Amoura Z, Lupoglazoff JM, Huong DL, Denjoy I, Vauthier D, et al. Outcome of pregnancies in patients with anti-SSA/Ro antibodies: a study of 165 pregnancies, with special focus on electrocardiographic variations in the children and comparison with a control group. Arthritis Rheum. 2004;50(10):3187–94.

    PubMed  Google Scholar 

  17. Friedman DM, Kim MY, Copel JA, Davis C, Phoon CK, Glickstein JS, et al. Utility of cardiac monitoring in fetuses at risk for congenital heart block: the PR interval and dexamethasone evaluation (PRIDE) prospective study. Circulation. 2008;117(4):485–93.

    PubMed  Google Scholar 

  18. Buyon JP, Hiebert R, Copel J, Craft J, Friedman D, Katholi M, et al. Autoimmune-associated congenital heart block: demographics, mortality, morbidity and recurrence rates obtained from a national neonatal lupus registry. J Am Coll Cardiol. 1998;31(7):1658–66.

    PubMed  CAS  Google Scholar 

  19. Gladman G, Silverman ED, Yuk L, Luy L, Boutin C, Laskin C, et al. Fetal echocardiographic screening of pregnancies of mothers with anti-Ro and/or anti-La antibodies. Am J Perinatol. 2002;19(2):73–80.

    PubMed  Google Scholar 

  20. Julkunen H, Eronen M. The rate of recurrence of isolated congenital heart block: a population-based study. Arthritis Rheum. 2001;44(2):487–8.

    PubMed  CAS  Google Scholar 

  21. Solomon DG, Rupel A, Buyon JP. Birth order, gender and recurrence rate in autoantibody-associated congenital heart block: implications for pathogenesis and family counseling. Lupus. 2003;12(8):646–7.

    PubMed  Google Scholar 

  22. Waltuck J, Buyon JP. Autoantibody-associated congenital heart block: outcome in mothers and children. Ann Intern Med. 1994;120(7):544–51.

    PubMed  CAS  Google Scholar 

  23. Izmirly PM, Llanos C, Lee LA, Askanase A, Kim MY, Buyon JP. Cutaneous manifestations of neonatal lupus and risk of subsequent congenital heart block. Arthritis Rheum. 2010;62(4):1153–7.

    PubMed  PubMed Central  Google Scholar 

  24. Brucato A, Cimaz R, Caporali R, Ramoni V, Buyon J. Pregnancy outcomes in patients with autoimmune diseases and anti-Ro/SSA antibodies. Clin Rev Allergy. 2011;40(1):27–41.

    CAS  Google Scholar 

  25. Izmirly PM, Costedoat-Chalumeau N, Pisoni CN, Khamashta MA, Kim MY, Saxena A, et al. Maternal use of hydroxychloroquine is associated with a reduced risk of recurrent anti-SSA/Ro-antibody-associated cardiac manifestations of neonatal lupus. Circulation. 2012;126(1): 76–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Rivera TL, Izmirly PM, Birnbaum BK, Byrne P, Brauth JB, Katholi M, et al. Disease progression in mothers of children enrolled in the Research Registry for Neonatal Lupus. Ann Rheum Dis. 2009;68(6):828–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Neiman AR, Lee LA, Weston WL, Buyon JP. Cutaneous manifestations of neonatal lupus without heart block: characteristics of mothers and children enrolled in a national registry. J Pediatr. 2000;137(5):674–80.

    PubMed  CAS  Google Scholar 

  28. Lee LA. Maternal autoantibodies and pregnancy-II: The neonatal lupus syndrome. Baillieres Clin Rheumatol. 1990;4(1):69–84.

    PubMed  CAS  Google Scholar 

  29. Lee LA, Sokol RJ, Buyon JP. Hepatobiliary disease in neonatal lupus: prevalence and clinical characteristics in cases enrolled in a national registry. Pediatrics. 2002;109(1):E11.

    PubMed  Google Scholar 

  30. Lee LA, Reichlin M, Ruyle SZ, Weston WL. Neonatal lupus liver-disease. Lupus. 1993;2(5): 333–8.

    PubMed  CAS  Google Scholar 

  31. Kanagasegar S, Cimaz R, Kurien BT, Brucato A, Scofield RH. Neonatal lupus manifests as isolated neutropenia and mildly abnormal liver functions. J Rheumatol. 2002;29(1):187–91.

    PubMed  Google Scholar 

  32. Wolach B, Choc L, Pomeranz A, Ben Ari Y, Douer D, Metzker A. Aplastic anemia in neonatal lupus erythematosus. Am J Dis Child. 1993;147(9):941–4.

    PubMed  CAS  Google Scholar 

  33. Boros CA, Spence D, Blaser S, Silverman ED. Hydrocephalus and macrocephaly: new manifestations of neonatal lupus erythematosus. Arthritis Rheum. 2007;57(2):261–6.

    PubMed  Google Scholar 

  34. Gualtieri T, Hicks RE. An immunoreactive theory of selective male affliction. Behav Brain Sci. 1985;8(3):427–41.

    Google Scholar 

  35. Crawford SG, Kaplan BJ, Kinsbourne M. The effects of parental immunoreactivity on pregnancy, birth, and cognitive-development - maternal immune attack on the fetus. Cortex. 1992;28(3):483–91.

    PubMed  CAS  Google Scholar 

  36. Behan P, Geschwind N. Dyslexia, congenital anomalies, and immune disorders: the role of the fetal environment. Ann N Y Acad Sci. 1985;457:13–8.

    PubMed  CAS  Google Scholar 

  37. Behan WMH, Behan PO, Geschwind N. Anti-Ro antibody in mothers of dyslexic-children. Dev Med Child Neurol. 1985;27(4):538–40.

    PubMed  CAS  Google Scholar 

  38. Ross G, Sammaritano L, Nass R, Lockshin M. Effects of mothers’ autoimmune disease during pregnancy on learning disabilities and hand preference in their children. Arch Pediatr. 2003;157(4):397–402.

    Google Scholar 

  39. Askanase AD, Izmirly PM, Katholi M, Mumtaz J, Buyon JP. Frequency of neuro-psychiatric dysfunction in anti-SSA/SSB exposed children with and without neonatal lupus. Lupus. 2010;19(3):300–6.

    PubMed  CAS  Google Scholar 

  40. Friedman DM, Llanos C, Izmirly PM, Brock B, Byron J, Copel J, et al. Evaluation of fetuses in a study of intravenous immunoglobulin as preventive therapy for congenital heart block: results of a multicenter, prospective, open-label clinical trial. Arthritis Rheum. 2010;62(4):1138–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Pisoni CN, Brucato A, Ruffatti A, Espinosa G, Cervera R, Belmonte-Serrano M, et al. Failure of intravenous immunoglobulin to prevent congenital heart block: findings of a multicenter, prospective, observational study. Arthritis Rheum. 2010;62(4):1147–52.

    PubMed  CAS  Google Scholar 

  42. Jaeggi E, Laskin C, Hamilton R, Kingdom J, Silverman E. The importance of the level of maternal anti-Ro/SSA antibodies as a prognostic marker of the development of cardiac neonatal lupus erythematosus a prospective study of 186 antibody-exposed fetuses and infants. J Am Coll Cardiol. 2010;55(24):2778–84.

    PubMed  CAS  Google Scholar 

  43. Gordon P, Khamashta MA, Rosenthal E, Simpson JM, Sharland G, Brucato A, et al. Anti-52 kDa Ro, anti-60 kDa Ro, and anti-La antibody profiles in neonatal lupus. J Rheumatol. 2004;31(12):2480–7.

    PubMed  CAS  Google Scholar 

  44. Askanase AD, Friedman DM, Copel J, Dische MR, Dubin A, Starc TJ, et al. Spectrum and progression of conduction abnormalities in infants born to mothers with anti-SSA/Ro-SSB/La antibodies. Lupus. 2002;11(3):145–51.

    PubMed  CAS  Google Scholar 

  45. Jaeggi ET, Silverman ED, Laskin C, Kingdom J, Golding F, Weber R. Prolongation of the atrioventricular conduction in fetuses exposed to maternal anti-Ro/SSA and anti-La/SSB antibodies did not predict progressive heart block. A prospective observational study on the effects of maternal antibodies on 165 fetuses. J Am Coll Cardiol. 2011;57(13):1487–92.

    PubMed  Google Scholar 

  46. Saleeb S, Copel J, Friedman D, Buyon JP. Comparison of treatment with fluorinated glucocorticoids to the natural history of autoantibody-associated congenital heart block: retrospective review of the research registry for neonatal lupus. Arthritis Rheum. 1999;42(11): 2335–45.

    PubMed  CAS  Google Scholar 

  47. Brucato A, Previtali E, Ramoni V, Ghidoni S. Arrhythmias presenting in neonatal lupus. Scand J Immunol. 2010;72(3):198–204 [Review].

    PubMed  CAS  Google Scholar 

  48. Hornberger LK, Al RN. Spectrum of cardiac involvement in neonatal lupus. Scand J Immunol. 2010;72(3):189–97 [Review].

    PubMed  CAS  Google Scholar 

  49. Cuneo BF, Strasburger JF, Niksch A, Ovadia M, Wakai RT. An expanded phenotype of maternal SSA/SSB antibody-associated fetal cardiac disease. J Matern Fetal Neonatal Med. 2009;22(3):233–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Llanos C, Friedman DM, Saxena A, Izmirly PM, Tseng CE, Dische R, et al. Anatomical and pathological findings in hearts from fetuses and infants with cardiac manifestations of neonatal lupus. Rheumatology (Oxford). 2012;51(6):1086–92.

    Google Scholar 

  51. Guettrot-Imbert G, Cohen L, Fermont L, Villain E, Frances C, Thiebaugeorges O, et al. A new presentation of neonatal lupus: 5 cases of isolated mild endocardial fibroelastosis associated with maternal anti-SSA/Ro and anti-SSB/La antibodies. J Rheumatol. 2011;38(2):378–86.

    PubMed  Google Scholar 

  52. Moak JP, Barron KS, Hougen TJ, Wiles HB, Balaji S, Sreeram N, et al. Congenital heart block: development of late-onset cardiomyopathy, a previously underappreciated sequela. J Am Coll Cardiol. 2001;37(1):238–42.

    PubMed  CAS  Google Scholar 

  53. Nield LE, Silverman ED, Smallhorn JF, Taylor GP, Mullen JB, Benson LN, et al. Endocardial fibroelastosis associated with maternal anti-Ro and anti-La antibodies in the absence of atrioventricular block. J Am Coll Cardiol. 2002;40(4):796–802.

    PubMed  CAS  Google Scholar 

  54. Nield LE, Silverman ED, Taylor GP, Smallhorn JF, Mullen JB, Silverman NH, et al. Maternal anti-Ro and anti-La antibody-associated endocardial fibroelastosis. Circulation. 2002;105(7):843–8.

    PubMed  Google Scholar 

  55. Eliasson H, Sonesson SE, Sharland G, Granath F, Simpson JM, Carvalho JS, et al. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. Circulation. 2011;124(18):1919–26.

    PubMed  Google Scholar 

  56. Clancy RM, Alvarez D, Komissarova E, Barrat FJ, Swartz J, Buyon JP. Ro60-associated single-stranded RNA links inflammation with fetal cardiac fibrosis via ligation of TLRs: a novel pathway to autoimmune-associated heart block. J Immunol. 2010;184(4):2148–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Karnabi E, Boutjdir M. Role of calcium channels in congenital heart block. Scand J Immunol. 2010;72(3):226–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Miranda-Carus ME, Askanase AD, Clancy RM, Di Donato F, Chou TM, Libera MR, et al. Anti-SSA/Ro and anti-SSB/La autoantibodies bind the surface of apoptotic fetal cardiocytes and promote secretion of TNF-alpha by macrophages. J Immunol. 2000;165(9):5345–51.

    PubMed  CAS  Google Scholar 

  59. Tran HB, Macardle PJ, Hiscock J, Cavill D, Bradley J, Buyon JP, et al. Anti-La/SSB antibodies transported across the placenta bind apoptotic cells in fetal organs targeted in neonatal lupus. Arthritis Rheum. 2002;46(6):1572–9.

    PubMed  CAS  Google Scholar 

  60. Tran HB, Ohlsson M, Beroukas D, Hiscock J, Bradley J, Buyon JP, et al. Subcellular redistribution of la/SSB autoantigen during physiologic apoptosis in the fetal mouse heart and conduction system: a clue to the pathogenesis of congenital heart block. Arthritis Rheum. 2002;46(1):202–8.

    PubMed  CAS  Google Scholar 

  61. Clancy RM, Neufing PJ, Zheng P, O’Mahony M, Nimmerjahn F, Gordon TP, et al. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J Clin Invest. 2006;116(9):2413–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Clancy RM, Kapur RP, Molad Y, Askanase AD, Buyon JP. Immunohistologic evidence supports apoptosis, IgG deposition, and novel macrophage/fibroblast crosstalk in the pathologic cascade leading to congenital heart block. Arthritis Rheum. 2004;50(1):173–82.

    PubMed  CAS  Google Scholar 

  63. Garcia S, Nascimento JH, Bonfa E, Levy R, Oliveira SF, Tavares AV, et al. Cellular mechanism of the conduction abnormalities induced by serum from anti-Ro/SSA-positive patients in rabbit hearts. J Clin Invest. 1994;93(2):718–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Xiao GQ, Hu K, Boutjdir M. Direct inhibition of expressed cardiac l- and t-type calcium channels by IGG from mothers whose children have congenital heart block. Circulation. 2001;103(11):1599–604.

    PubMed  CAS  Google Scholar 

  65. Karnabi E, Qu Y, Mancarella S, Boutjdir M. Rescue and worsening of congenital heart block-associated electrocardiographic abnormalities in two transgenic mice. J Cardiovasc Electrophysiol. 2011;22(8):922–30.

    PubMed  PubMed Central  Google Scholar 

  66. Ben-Chetrit E, Gandy BJ, Tan EM, Sullivan KF. Isolation and characterization of a cDNA clone encoding the 60-kD component of the human SS-A/Ro ribonucleoprotein autoantigen. J Clin Invest. 1989;83(4):1284–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Deutscher SL, Harley JB, Keene JD. Molecular analysis of the 60-kDa human Ro ribonucleoprotein. Proc Natl Acad Sci U S A. 1988;85(24):9479–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Lerner MR, Boyle JA, Hardin JA, Steitz JA. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science. 1981;211(4480):400–2.

    PubMed  CAS  Google Scholar 

  69. Wang D, Buyon JP, Chan EK. Cloning and expression of mouse 60 kDa ribonucleoprotein SS-A/Ro. Mol Biol Rep. 1996;23(3–4):205–10.

    PubMed  CAS  Google Scholar 

  70. O’Brien CA, Wolin SL. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994;8(23):2891–903.

    PubMed  Google Scholar 

  71. Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, et al. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci U S A. 2003;100(13):7503–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Chan EK, Francoeur AM, Tan EM. Epitopes, structural domains, and asymmetry of amino acid residues in SS-B/La nuclear protein. J Immunol. 1986;136(10):3744–9.

    PubMed  CAS  Google Scholar 

  73. Chambers JC, Kenan D, Martin BJ, Keene JD. Genomic structure and amino acid sequence domains of the human La autoantigen. J Biol Chem. 1988;263(34):18043–51.

    PubMed  CAS  Google Scholar 

  74. Gottlieb E, Steitz JA. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J. 1989;8(3):851–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Boire G, Craft J. Human Ro ribonucleoprotein particles: characterization of native structure and stable association with the La polypeptide. J Clin Invest. 1990;85(4):1182–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Ben-Chetrit E, Chan EK, Sullivan KF, Tan EM. A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med. 1988;167(5):1560–71.

    PubMed  CAS  Google Scholar 

  77. Chan EK, Hamel JC, Buyon JP, Tan EM. Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen. J Clin Invest. 1991;87(1):68–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Oke V, Wahren-Herlenius M. The immunobiology of Ro52 (TRIM21) in autoimmunity: a critical review. J Autoimmun. 2012;39(1–2):77–82 [Review].

    PubMed  CAS  Google Scholar 

  79. Salomonsson S, Dorner T, Theander E, Bremme K, Larsson P, Wahren-Herlenius M. A serologic marker for fetal risk of congenital heart block. Arthritis Rheum. 2002;46(5):1233–41.

    PubMed  CAS  Google Scholar 

  80. Strandberg L, Winqvist O, Sonesson SE, Mohseni S, Salomonsson S, Bremme K, et al. Antibodies to amino acid 200-239 (p200) of Ro52 as serological markers for the risk of developing congenital heart block. Clin Exp Immunol. 2008;154(1):30–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Clancy RM, Buyon JP, Ikeda K, Nozawa K, Argyle DA, Friedman DM, et al. Maternal antibody responses to the 52-kd SSA/RO p200 peptide and the development of fetal conduction defects. Arthritis Rheum. 2005;52(10):3079–86.

    PubMed  CAS  Google Scholar 

  82. Reed JH, Clancy RM, Lee KH, Saxena A, Izmirly PM, Buyon JP. Umbilical cord blood levels of maternal antibodies reactive with p200 and full-length Ro52 in the assessment of risk for cardiac manifestations of neonatal lupus. Arthritis Care Res. 2012;64(9):1373–81.

    Google Scholar 

  83. Mazel JA, El-Sherif N, Buyon J, Boutjdir M. Electrocardiographic abnormalities in a murine model injected with IgG from mothers of children with congenital heart block. Circulation. 1999;99(14):1914–8.

    PubMed  CAS  Google Scholar 

  84. Salomonsson S, Sonesson SE, Ottosson L, Muhallab S, Olsson T, Sunnerhagen M, et al. Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block. J Exp Med. 2005;201(1):11–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Ambrosi A, Salomonsson S, Eliasson H, Zeffer E, Skog A, Dzikaite V, et al. Development of heart block in children of SSA/SSB-autoantibody-positive women is associated with maternal age and displays a season-of-birth pattern. Ann Rheum Dis. 2012;71(3):334–40.

    PubMed  Google Scholar 

  86. Pociot F, Briant L, Jongeneel CV, Molvig J, Worsaae H, Abbal M, et al. Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol. 1993;23(1):224–31.

    PubMed  CAS  Google Scholar 

  87. Werth VP, Zhang W, Dortzbach K, Sullivan K. Association of a promoter polymorphism of tumor necrosis factor-alpha with subacute cutaneous lupus erythematosus and distinct photoregulation of transcription. J Invest Dermatol. 2000;115(4):726–30.

    PubMed  CAS  Google Scholar 

  88. Clancy RM, Backer CB, Yin X, Kapur RP, Molad Y, Buyon JP. Cytokine polymorphisms and histologic expression in autopsy studies: contribution of TNF-alpha and TGF-beta 1 to the pathogenesis of autoimmune-associated congenital heart block. J Immunol. 2003;171(6): 3253–61.

    PubMed  CAS  Google Scholar 

  89. Cimaz R, Borghi MO, Gerosa M, Biggioggero M, Raschi E, Meroni PL. Transforming growth factor beta1 in the pathogenesis of autoimmune congenital complete heart block: lesson from twins and triplets discordant for the disease. Arthritis Rheum. 2006;54(1):356–9.

    PubMed  CAS  Google Scholar 

  90. Hamilton RG, Harley JB, Bias WB, Roebber M, Reichlin M, Hochberg MC, et al. Two Ro (SS-A) autoantibody responses in systemic lupus erythematosus. Correlation of HLA-DR/DQ specificities with quantitative expression of Ro (SS-A) autoantibody. Arthritis Rheum. 1988;31(4):496–505.

    PubMed  CAS  Google Scholar 

  91. Harley JB, Reichlin M, Arnett FC, Alexander EL, Bias WB, Provost TT. Gene interaction at HLA-DQ enhances autoantibody production in primary Sjogren’s syndrome. Science. 1986;232(4754):1145–7.

    PubMed  CAS  Google Scholar 

  92. Scofield RH, Frank MB, Neas BR, Horowitz RM, Hardgrave KL, Fujisaku A, et al. Cooperative association of T cell beta receptor and HLA-DQ alleles in the production of anti-Ro in systemic lupus erythematosus. Clin Immunol Immunopathol. 1994;72(3):335–41.

    PubMed  CAS  Google Scholar 

  93. Graham RR, Ortmann W, Rodine P, Espe K, Langefeld C, Lange E, et al. Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur J Hum Genet. 2007;15(8):823–30.

    PubMed  CAS  Google Scholar 

  94. Strandberg LS, Ambrosi A, Jagodic M, Dzikaite V, Janson P, Khademi M, et al. Maternal MHC regulates generation of pathogenic antibodies and fetal MHC-encoded genes determine susceptibility in congenital heart block. J Immunol. 2010;185(6):3574–82.

    PubMed  CAS  Google Scholar 

  95. Clancy RM, Marion MC, Kaufman KM, Ramos PS, Adler A, Harley JB, et al. Identification of candidate loci at 6p21 and 21q22 in a genome-wide association study of cardiac manifestations of neonatal lupus. Arthritis Rheum. 2010;62(11):3415–24.

    PubMed  PubMed Central  Google Scholar 

  96. Saxena A, McDonnell E, Ramos PS, Sajuthi S, Marion MC, Langefeld CD, et al. Preferential transmission of genetic risk variants of candidate loci at 6p21 from asymptomatic grandparents to mothers of children with neonatal lupus. Arthritis Rheum. 2012;64(3):931–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Spence D, Hornberger L, Hamilton R, Silverman ED. Increased risk of complete congenital heart block in infants born to women with hypothyroidism and anti-Ro and/or anti-La antibodies. J Rheumatol. 2006;33(1):167–70.

    PubMed  CAS  Google Scholar 

  98. Askanase AD, Iloh I, Buyon JP. Hypothyroidism and antithyroglobulin and antithyroperoxidase antibodies in the pathogenesis of autoimmune associated congenital heart block. J Rheumatol. 2006;33(10):2099 [Letter].

    PubMed  Google Scholar 

  99. Buyon JP, Winchester R. Congenital complete heart block. A human model of passively acquired autoimmune injury. Arthritis Rheum. 1990;33(5):609–14.

    PubMed  CAS  Google Scholar 

  100. Buyon JP, Waltuck J, Kleinman C, Copel J. In utero identification and therapy of congenital heart block. Lupus. 1995;4(2):116–21.

    PubMed  CAS  Google Scholar 

  101. Langguth DM, Morris S, Clifford L, Wilson RJ, Neil J, Hogan PG, et al. Specific testing for “isolated” anti-52 kDa SSA/Ro antibodies during standard anti-extractable nuclear antigen testing is of limited clinical value. J Clin Pathol. 2007;60(6):670–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Provost TT, Watson R, Gammon WR, Radowsky M, Harley JB, Reichlin M. The neonatal lupus syndrome associated with U1RNP (nRNP) antibodies. N Engl J Med. 1987;316(18): 1135–8.

    PubMed  CAS  Google Scholar 

  103. Acherman RJ, Friedman DM, Buyon JP, Schwartz J, Castillo WJ, Rollins RC, et al. Doppler fetal mechanical PR interval prolongation with positive maternal anti-RNP but negative SSA/Ro and SSB/La auto-antibodies. Prenat Diagn. 2010;30(8):797–9.

    PubMed  PubMed Central  Google Scholar 

  104. Jaeggi ET, Fouron JC, Silverman ED, Ryan G, Smallhorn J, Hornberger LK. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation. 2004;110(12):1542–8.

    PubMed  Google Scholar 

  105. Marciniak B, Patro-Malysza J, Poniedzialek-Czajkowska E, Kimber-Trojnar Z, Leszczynska-Gorzelak B, Oleszczuk J. Glucocorticoids in pregnancy. Curr Pharm Biotechnol. 2011;12(5): 750–7 [Review].

    PubMed  CAS  Google Scholar 

  106. Shinohara K, Miyagawa S, Fujita T, Aono T, Kidoguchi K. Neonatal lupus erythematosus: results of maternal corticosteroid therapy. Obstet Gynecol. 1999;93(6):952–7.

    PubMed  CAS  Google Scholar 

  107. Costedoat-Chalumeau N, Amoura Z, Le Thi HD, Wechsler B, Vauthier D, Ghillani P, et al. Questions about dexamethasone use for the prevention of anti-SSA related congenital heart block. Ann Rheum Dis. 2003;62(10):1010–2.

    PubMed  CAS  Google Scholar 

  108. Trucco SM, Jaeggi E, Cuneo B, Moon-Grady AJ, Silverman E, Silverman N, et al. Use of intravenous gamma globulin and corticosteroids in the treatment of maternal autoantibody-mediated cardiomyopathy. J Am Coll Cardiol. 2011;57(6):715–23.

    PubMed  Google Scholar 

  109. Izmirly PM, Kim MY, Llanos C, Le PU, Guerra MM, Askanase AD, et al. Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine. Ann Rheum Dis. 2010;69(10):1827–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Askanase AD, Miranda-Carus ME, Tang X, Katholi M, Buyon JP. The presence of IgG antibodies reactive with components of the SSA/Ro-SSB/La complex in human breast milk: implications in neonatal lupus. Arthritis Rheum. 2002;46(1):269–71.

    PubMed  CAS  Google Scholar 

  111. Klauninger R, Skog A, Horvath L, Winqvist O, Edner A, Bremme K, et al. Serologic follow-up of children born to mothers with Ro/SSA autoantibodies. Lupus. 2009;18(9):792–8.

    PubMed  CAS  Google Scholar 

  112. Martin V, Lee LA, Askanase AD, Katholi M, Buyon JP. Long-term followup of children with neonatal lupus and their unaffected siblings. Arthritis Rheum. 2002;46(9):2377–83.

    PubMed  Google Scholar 

  113. Esscher E, Scott JS. Congenital heart block and maternal systemic lupus erythematosus. Br Med J. 1979;1(6173):1235–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Jackson R, Gulliver M. Neonatal lupus erythematosus progressing into systemic lupus erythematosus. A 15 year follow-up. Br J Dermatol. 1979;101(1):81–6 [Case Reports].

    PubMed  CAS  Google Scholar 

  115. Fox Jr RJ, McCuistion CH, Schoch Jr EP. Systemic lupus erythematosus. Association with previous neonatal lupus erythematosus. Arch Dermatol. 1979;115(3):340 [Case Reports].

    PubMed  Google Scholar 

  116. Waterworth RF. Systemic lupus erythematosus occurring with congenital complete heart block. N Z Med J. 1980;92(670):311–2.

    PubMed  CAS  Google Scholar 

  117. Lanham JG, Walport MJ, Hughes GR. Congenital heart block and familial connective tissue disease. J Rheumatol. 1983;10(5):823–5.

    PubMed  CAS  Google Scholar 

  118. Brucato A, Gasparini M, Vignati G, et al. Isolated congenital complete heart block: long term outcome of children and immunogenetic study. J Rheumatol. 1995;22(3):541–3.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Amanda Zink for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Izmirly M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendez, B., Saxena, A., Buyon, J.P., Izmirly, P.M. (2014). Neonatal Lupus. In: Sammaritano, L., Bermas, B. (eds) Contraception and Pregnancy in Patients with Rheumatic Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0673-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0673-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0672-7

  • Online ISBN: 978-1-4939-0673-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics