Skip to main content

Abstract

Alterations in local immune function occur during the course of a woman’s menstrual cycle that result in changes in the quantity and distribution of immune cells within the female genital tract. As the uterus prepares for pregnancy and after conception occurs, additional changes in local immunity allow the maternal immune system to recognize but not react against the semi-allograft fetus. Uterine natural killer cells, a specialized immune cell subpopulation that is found within the uterus in increasing amounts during gestation, appear to be imperative for successful placental trophoblast invasion early in pregnancy. Shifts in the patterns of cytokine release by T helper cells during the course of pregnancy appear to produce changing inflammatory responses that aid in the successful continuation of pregnancy. Some changes in the maternal immune system can be seen systemically as well as locally. The frequency of flares and periods of remission of many autoimmune disorders are also affected by gestational changes in local and systemic immune responses. When the necessary immune shifts do not occur, pregnancy pathologies such as preterm labor, preeclampsia, and isolated or recurrent pregnancy loss may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

ANG2:

Angiopoietin 2

CMV:

Cytomegalovirus

CSA:

Chondroitin sulfate A

CTL:

Cytotoxic T lymphocyte

DAF:

Decay-accelerating factor

DC:

Dendritic cell

EVT:

Extravillous cytotrophoblast

hCG:

Human chorionic gonadotropin

HLA:

Human leukocyte antigen

IFN:

Interferon

IL:

Interleukin

KAR:

Killer activation receptor

KIRS:

Killer immunoglobulin-like receptors

LIF:

Leukemia inhibitory factor

LIRS:

Leukocyte immunoglobulin-like receptors

MAC:

Membrane attack complex

MBL:

Mannose-binding lectin

MCP:

Membrane cofactor protein

MHC:

Major histocompatibility complex

MS:

Multiple sclerosis

NF-κB:

Nuclear factor-kappa B

NK:

Natural killer

PIBF:

Progesterone-induced binding factor

PIGF:

Placental growth factor

RA:

Rheumatoid arthritis

SLE:

Systemic lupus erythematosus

SynT:

Syncytiotrophoblast

TCR:

T cell receptor

Tfh:

Follicular helper T lymphocyte

TGF:

Transforming growth factor

Th:

T helper

TNF:

Tumor necrosis factor

Treg:

T regulatory lymphocyte

UL:

Unique long

uNK:

Uterine natural killer lymphocyte

US:

Unique short

VEGFC:

Vascular endothelial growth factor C

VZV:

Varicella zoster virus

References

  1. Thiruchelvam U et al. The importance of the macrophage within the human endometrium. J Leukoc Biol. 2012;93(2):217–25.

    Article  PubMed  Google Scholar 

  2. Granot I, Gnainsky Y, Dekel N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction. 2012;144(6):661–8.

    Article  PubMed  CAS  Google Scholar 

  3. Halvorson, L. Ch. 15 Reproductive Endocrinology. In: Hoffman BL, Schorge JO, Schaffer JI, Halvorson LM, Bradshaw KD, Cunningham F, Calver LE. Hoffman B.L., Schorge J.O., Schaffer J.I., Halvorson L.M., Bradshaw K.D., Cunningham F, Calver L.E., editors. Williams Gynecology. New York: The McGraw-Hill Companies; 2012. p. 400–39.

    Google Scholar 

  4. Hassold T. A cytogenetic study of repeated spontaneous abortions. Am J Hum Genet. 1980;32(5):723–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Ogasawara M et al. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil Steril. 2000;73(2):300–4.

    Article  PubMed  CAS  Google Scholar 

  6. Stephenson MD, Awartani KA, Robinson WP. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case–control study. Hum Reprod. 2002;17(2):446–51.

    Article  PubMed  CAS  Google Scholar 

  7. Moffett A, Loke C. Implantation, embryo-maternal interactions, immunology and modulation of the uterine environment – a workshop report. Placenta. 2006;27(Suppl):54–5.

    Article  Google Scholar 

  8. Yoshinaga K. Review of factors essential for blastocyst implantation for their modulating effects on the maternal immune system. Semin Cell Dev Biol. 2008;19(2):161–9.

    Article  PubMed  CAS  Google Scholar 

  9. Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. 2004;63(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  10. Hsieh C-S, Lee H-M, Lio C-WJ. Selection of regulatory T cells in the thymus. Nat Rev Immunol. 2012;12(3):157–67.

    PubMed  CAS  Google Scholar 

  11. Abbas A, Lichtman A, Pillai S. B cell activation and antibody production, in cellular and molecular immunology. Philadelphia: Elsevier/Saunders; 2012. p. 243–68.

    Google Scholar 

  12. Reefman E et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol. 2010;184(9):4852–62.

    Article  PubMed  CAS  Google Scholar 

  13. Levinson W. Review of medical microbiology and immunology. New York: The McGraw-Hill Companies; 2012.

    Google Scholar 

  14. Abbas A, Lichtman A, Pillai S. Cells and tissues of the immune system, in cellular and molecular immunology. Philadelphia: Elsevier/Saunders; 2012. p. 15–36.

    Google Scholar 

  15. Banchereau J et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18(1): 767–811.

    Article  PubMed  CAS  Google Scholar 

  16. O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327(5969):1098–102.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hirahara K et al. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology. 2011;134(3):235–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Mucida D, Cheroutre H. Chapter 5 - The many face-lifts of CD4 T helper cells. In: Sidonia F, Andrea C, editors. Advances in immunology. Academic Press; 2010; 107. p. 139–52

    Google Scholar 

  19. Ghiringhelli F et al. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev. 2006;214(1):229–38.

    Article  PubMed  CAS  Google Scholar 

  20. Bluestone JA, Tang Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol. 2005;17(6):638–42.

    Article  PubMed  CAS  Google Scholar 

  21. Earle KE et al. In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clin Immunol. 2005;115(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  22. Sasaki Y et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004;10(5):347–53.

    Article  PubMed  CAS  Google Scholar 

  23. Prins JR et al. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens Pregnancy. 2009;28(3):300–11.

    Article  PubMed  Google Scholar 

  24. Hudson AW, Ploegh HL. The cell biology of antigen presentation. Exp Cell Res. 2002;272(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  25. Durkin HG, Waksman BH. Thymus and tolerance. Is regulation the major function of the thymus? Immunol Rev. 2001;182(1):33–57.

    Article  PubMed  CAS  Google Scholar 

  26. Medawar P. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol. 1953;7:320–8.

    Google Scholar 

  27. Kühnert M et al. Changes in lymphocyte subsets during normal pregnancy. Eur J Obstet Gynaecol Reprod Biol. 1998;76(2):147–51.

    Article  Google Scholar 

  28. Gehrz R et al. A longitudinal analysis of lymphocyte proliferative responses to mitogens and antigens during human pregnancy. Am J Obstet Gynecol. 1981;140(6):665–70.

    PubMed  CAS  Google Scholar 

  29. Bermas BL, Hill JA. Proliferative responses to recall antigens are associated with pregnancy outcome in women with a history of recurrent spontaneous abortion. J Clin Invest. 1997;100(6):1330–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Matthiesen L et al. Lymphocyte subsets and mitogen stimulation of blood lymphocytes in normal pregnancy. Am J Reprod Immunol. 1996;35(2):70–9.

    Article  PubMed  CAS  Google Scholar 

  31. Heikkinen J et al. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol. 2004;136(2):373–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Jin L-P et al. The CD4+CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin Immunol. 2009;133(3):402–10.

    Article  PubMed  CAS  Google Scholar 

  33. Winger EE, Reed JL. Low circulating CD4+ CD25+ Foxp3+ T regulatory cell levels predict miscarriage risk in newly pregnant women with a history of failure. Am J Reprod Immunol. 2011;66(4):320–8.

    Article  PubMed  CAS  Google Scholar 

  34. Steinborn A et al. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 2012;167(1):84–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Szekeres-Bartho J, Polgar B. PIBF: the double edged sword. Pregnancy and tumor. Am J Reprod Immunol. 2010;64(2):77–86.

    PubMed  CAS  Google Scholar 

  36. Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behav. 2012;62(3):263–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Polgár B et al. Urinary progesterone-induced blocking factor concentration is related to pregnancy outcome. Biol Reprod. 2004;71(5):1699–705.

    Article  PubMed  Google Scholar 

  38. Veenstra van Nieuwenhoven AL et al. Cytokine production in natural killer cells and lymphocytes in pregnant women compared with women in the follicular phase of the ovarian cycle. Fertil Steril. 2002;77(5):1032–7.

    Article  PubMed  Google Scholar 

  39. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.

    Article  PubMed  CAS  Google Scholar 

  40. Ishitani A, Sageshima N, Hatake K. The involvement of HLA-E and -F in pregnancy. J Reprod Immunol. 2006;69(2):101–13.

    Article  PubMed  CAS  Google Scholar 

  41. Ho H-N et al. Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy. Hum Immunol. 1996;49(2):130–6.

    Article  PubMed  CAS  Google Scholar 

  42. Beer A, Kwak J, Ruiz J. Immunophenotypic profiles of peripheral blood lymphocytes in women with recurrent pregnancy losses and in infertile women with multiple failed in vitro fertilization cycles. Am J Reprod Immunol. 1996;35(4):376–82.

    Article  PubMed  CAS  Google Scholar 

  43. Pitkin Rm WDL. Platelet and leukocyte counts in pregnancy. JAMA. 1979;242(24):2696–8.

    Article  PubMed  Google Scholar 

  44. Crouch SP, Crocker IP, Fletcher J. The effect of pregnancy on polymorphonuclear leukocyte function. J Immunol. 1995;155(11):5436–43.

    PubMed  CAS  Google Scholar 

  45. King A et al. Surface expression of HLA–C antigen by human extravillous trophoblast. Placenta. 2000;21(4):376–87.

    Article  PubMed  CAS  Google Scholar 

  46. Red-Horse K et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114(6):744–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Veenstra van Nieuwenhoven AL, Heineman MJ, Faas MM. The immunology of successful pregnancy. Hum Reprod Update. 2003;9(4):347–57.

    Article  PubMed  CAS  Google Scholar 

  48. Manaster I et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol. 2008;181(3):1869–76.

    Article  PubMed  CAS  Google Scholar 

  49. Male V, et al. Natural killer cells in human pregnancy. In: Campbell KS, editor. Natural killer cell protocols. Humana Press, New York, NY; 2010. p. 447–63.

    Google Scholar 

  50. Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2(9):656–63.

    Article  PubMed  CAS  Google Scholar 

  51. Fan D-X et al. The decidual gamma-delta T cells up-regulate the biological functions of trophoblasts via IL-10 secretion in early human pregnancy. Clin Immunol. 2011;141(3):284–92.

    Article  PubMed  CAS  Google Scholar 

  52. Kopcow HD et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A. 2005;102(43):15563–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Hanna J et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12(9):1065–74.

    Article  PubMed  CAS  Google Scholar 

  54. Richani K et al. Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med. 2005;17(4):239–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Johnson U, Gustavii B. Complement components in normal pregnancy. Acta Pathol Microbiol Immunol Scand C. 1987;95C(1–6):97–9.

    Google Scholar 

  56. Nagamatsu T, Schust DJ. Review: the immunomodulatory roles of macrophages at the maternal–fetal interface. Reprod Sci. 2010;17(3):209–18.

    Article  PubMed  CAS  Google Scholar 

  57. Birnberg T et al. Dendritic cells are crucial for decidual development during embryo implantation. Am J Reprod Immunol. 2007;57(5):342–3.

    Google Scholar 

  58. Atkinson JP, Farries T. Separation of self from non-self in the complement system. Immunol Today. 1987;8(7–8):212–5.

    Article  CAS  Google Scholar 

  59. Dimitriadis E et al. Review: LIF and IL11 in trophoblast-endometrial interactions during the establishment of pregnancy. Placenta. 2010;31(Suppl):S99–104.

    Article  PubMed  Google Scholar 

  60. Wegmann TG et al. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353–6.

    Article  PubMed  CAS  Google Scholar 

  61. Mor G, Cardenas I. Review article: The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Dekel N et al. Review article: Inflammation and implantation. Am J Reprod Immunol. 2010;63(1):17–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Romero R et al. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–26.

    Article  PubMed  Google Scholar 

  64. Keelan JA et al. Cytokines, prostaglandins and parturition—a review. Placenta. 2003;24(Suppl A):S33–46.

    Article  PubMed  Google Scholar 

  65. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–8.

    Article  PubMed  CAS  Google Scholar 

  66. Beck T, Schweikhart G, Stolz E. Immunohistochemical location of HPL, SP1 and β-HCG in normal placentas of varying gestational age. Arch Gynecol. 1986;239(2):63–74.

    Article  PubMed  CAS  Google Scholar 

  67. Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol. 2006;6(8):584–94.

    Article  PubMed  CAS  Google Scholar 

  68. Hunt JS, Orr HT. HLA and maternal-fetal recognition. FASEB J. 1992;6(6):2344–8.

    PubMed  CAS  Google Scholar 

  69. Furman MH, Ploegh HL, Schust DJ. Can viruses help us to understand and classify the MHC class I molecules at the maternal–fetal interface? Hum Immunol. 2000;61(11):1169–76.

    Article  PubMed  CAS  Google Scholar 

  70. Proll J et al. First trimester human endovascular trophoblast cells express both HLA-C and HLA-G. Am J Reprod Immunol. 1999;42(1):30–6.

    Article  PubMed  CAS  Google Scholar 

  71. Poole J, Claman H. Immunology of pregnancy. Clin Rev Allergy Immunol. 2004;26(3):161–70.

    Article  PubMed  Google Scholar 

  72. Karre K. MHC gene control of the natural killer system at the level of the target and the host. Semin Cancer Biol. 1991;2(5):295–309.

    PubMed  CAS  Google Scholar 

  73. Parham P et al. Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci. 1988;85(11):4005–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Faridi RM, Agrawal S. Killer immunoglobulin-like receptors (KIRs) and HLA-C allorecognition patterns implicative of dominant activation of natural killer cells contribute to recurrent miscarriages. Hum Reprod. 2011;26(2):491–7.

    Article  PubMed  CAS  Google Scholar 

  75. Chazara O, Xiong S, Moffett A. Maternal KIR and fetal HLA-C: a fine balance. J Leukoc Biol. 2011;90(4):703–16.

    Article  PubMed  CAS  Google Scholar 

  76. King A et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30(6):1623–31.

    Article  PubMed  CAS  Google Scholar 

  77. Li C et al. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc Natl Acad Sci. 2009;106(14): 5767–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Kanai T et al. Human leukocyte antigen-G-expressing cells differently modulate the release of cytokines from mononuclear cells present in the decidua versus peripheral blood. Am J Reprod Immunol. 2001;45(2):94–9.

    Article  PubMed  CAS  Google Scholar 

  79. Trowsdale J, Moffett A. NK receptor interactions with MHC class I molecules in pregnancy. Semin Immunol. 2008;20(6):317–20.

    Article  PubMed  CAS  Google Scholar 

  80. Madeja Z et al. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc Natl Acad Sci. 2011;108(10):4012–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Ober C et al. HLA-G1 protein expression is not essential for fetal survival. Placenta. 1998;19(2–3):127–32.

    Article  PubMed  CAS  Google Scholar 

  82. Tafuri A et al. T cell awareness of paternal alloantigens during pregnancy. Science. 1995;270(5236):630–3.

    Article  PubMed  CAS  Google Scholar 

  83. Nagamatsu T, Schust D. The role of intrauterine immune privilege in perinatal infectious diseases. In: Stein-Streilein J, editor. Infection, immune homeostasis and immune privilege. Basel: Springer; 2012. p. 53–91.

    Chapter  Google Scholar 

  84. Oertelt-Prigione S. The influence of sex and gender on the immune response. Autoimmun Rev. 2012;11(6–7):A479–85.

    Article  PubMed  CAS  Google Scholar 

  85. Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol. 2003;38(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  86. Arruvito L et al. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol. 2007; 178(4):2572–8.

    Article  PubMed  CAS  Google Scholar 

  87. Prieto GA, Rosenstein Y. Oestradiol potentiates the suppressive function of human CD4+ CD25+ regulatory T cells by promoting their proliferation. Immunology. 2006;118(1):58–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Koldehoff M et al. Modulating impact of human chorionic gonadotropin hormone on the maturation and function of hematopoietic cells. J Leukoc Biol. 2011;90(5):1017–26.

    Article  PubMed  CAS  Google Scholar 

  89. Segerer SE et al. Original article: Impact of female sex hormones on the maturation and function of human dendritic cells. Am J Reprod Immunol. 2009;62(3):165–73.

    Article  PubMed  CAS  Google Scholar 

  90. Schumacher A et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J Immunol. 2009;182(9):5488–97.

    Article  PubMed  CAS  Google Scholar 

  91. Shelly S, Boaz M, Orbach H. Prolactin and autoimmunity. Autoimmun Rev. 2012;11(6–7): A465–70.

    Article  PubMed  CAS  Google Scholar 

  92. Jackson DL, Schust DJ. The role of the placenta in autoimmune disease and early pregnancy loss, in the placenta. Hoboken: Wiley-Blackwell; 2011. p. 213–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny J. Schust M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schust, D.J., Stephens, A.J. (2014). Immunology of Pregnancy. In: Sammaritano, L., Bermas, B. (eds) Contraception and Pregnancy in Patients with Rheumatic Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0673-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0673-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0672-7

  • Online ISBN: 978-1-4939-0673-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics