Skip to main content

Generating Sentences

  • Chapter
  • First Online:
The Nature of Language
  • 1674 Accesses

Abstract

Although neuroimaging and electrophysiological techniques allow a more precise determination of those neural correlates associated with sentence processing, methodological problems prevent to support an unambiguous position. Some critical factors are sentence structures per se, task condition, working memory functions and statistical analyses of imaging data. However, functional magnetic resonance imaging (fMRI) data show that in particular Broca’s area (BA 44 and 45), the left supplementary motor area, and the premotor cortex are involved in complex sentence processing. These computations involve also the generation of syntactic dependencies. The findings on complex syntax are consistent with those data, which show that working memory functions, including rehearsal operations, activate different region in the prefrontal cortex. In contrast, interpreting sentence meanings seem to recruit in particular the left (but sometimes also the right) middle and superior temporal gyrus and parietal regions including the angular gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Sept. 2012, “Ethnologue” classifies 6,909 distinct languages (Lewis, ed. 2009).

  2. 2.

    Typically, Broca’s area involves BA 44 & 45, but some studies include also BA 47. In addition, the terms pars opercularis (F3op) and pars triangularis (F3t) are used which are not respectively coextensive with BA 44 and BA 45.

  3. 3.

    In this context, a general picture about some relevant findings will be drawn and details of methodological differences among different studies such as design issues (e.g., block vs. event-related design; modality of presentation), which usually modify the final results and thus may lead in some cases to different conclusions.

  4. 4.

    The most popular non-invasive method to measure electrophysiological activity of the brain is called event-related potentials (ERPs). It can be considered as functional electroencephalography (EEG) as electric cortical activity is measured in response to a cognitive-behavioral task, whereas electrodes are placed on the scalps surface. The EEG was discovered by the German physician Hans Berger in 1924. It reflects thousands of parallel cortical processes and correlation of the electric signal to a specific stimulus requires many trials that random noise can be averaged out. The ERPs provide an online measurement of the brain’s activity and may reveal responses, which cannot be exclusively detected by behavioral means. While the temporal resolution of ERPs is excellent (ca. < 10 ms), their spatial resolution remains undefined as ERPs cannot be (sub)cortically localized. The most known ERP components are the early left anterior negativity (ELAN), the N400 and the P600. ELAN is a negative µV response that peaks ca. < 200 ms after presentation of a phrase structure violation (e.g., Sam played on the *wrote) and the N400 is a negative response to a semantic violation ca. 400 ms after the onset of the stimulus presentation (e.g., *Sam ate the shoes); the P600 is a positive response (also called syntactic positive shift, SPS) that will be elicited at around 500 ms after stimulus presentation and peaks at ca. 600 ms; it can be measured in garden-path sentences, at gap-filling dependencies and when morpho-syntactic violations (e.g., number, case, gender) are encountered (Osterhout and Holcomb 1992).

  5. 5.

    Magnetoencephalography (MEG), first reported by Cohen (1968), has a temporal resolution and generates evoked responses much like EEG/ERP. The magnetic components are labeled according to temporal latency. For example, the M100 is elicited ca. 100 ms post-stimulus presentation of a particular stimulus, usually tones, phonology information or words. The M400 (corresponds to the N400) is generated in context of semantic processing. However, magnetic fields are less distorted than EEG and have therefore a better spatial resolution. While EEG is sensitive to extracellular volume currents elicited by post-synaptic potentials, MEG is sensitive to intracellular currents of these synaptic potentials. EEG can detect activity in the sulci and at top of the cortical gyri, but MEG detects activity mostly in the sulci. In contrast to EEG, MEG activity can be localized with more accuracy. MEG is often combined with (f)MRI to generate functional cortical maps.

  6. 6.

    MEG or EEG data can be mapped onto a standard anatomical brain (inverse mapping).

  7. 7.

    The cross-modal lexical decision task is considered as an online method to examine early access to lexical (or other linguistic) information. It is a dual task because participants typically listening to individual sentences while performing simultaneously a lexical decision task (the decision whether a lexical string is a word or not) at a certain point during the sentence presentation. If in the lexical decision task a word is displayed, it can be semantically related to a word or structure in the sentence or it is unrelated. The statistical evaluation of the reaction time differences between related and control words show whether lexical priming was found or not (Swinney and Hakes 1976).

References

  • Amunts, K., Lenzen, M., Friederici, A. D., Schleicher, A., Morosan, P., Palomero-Gallagher, N., & Zilles, K. (2010). Broca’s region: Novel organizational principles and multiple receptor mapping. PLoS Biology, 8(9). doi:10.1371/journal.pbio.1000489.

    Google Scholar 

  • Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D., & Knösche, T. R. (2007). Connectivity-based parcellation of Broca’s area. Cerebral Cortex, 17(4), 816–825.

    Article  PubMed  Google Scholar 

  • Assadollahi, R., & Rockstroh, B. S. (2008). Representation of the verb’s argument-structure in the human brain. BMC Neuroscience, 9, 69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ben-Shachar, M., Palti, D., & Grodzinsky, Y. (2004). Neural correlates of syntactic movement: Converging evidence from two fMRI experiments. NeuroImage, 21(4), 1320–1336.

    Article  PubMed  Google Scholar 

  • Bilenko, N. Y., Grindrod, C. M., Myers, E. B., & Blumstein, S. E. (2009). Neural correlates of semantic competition during processing of ambiguous words. Journal of Cognitive Neuroscience, 21(5), 960–975.

    Article  PubMed Central  PubMed  Google Scholar 

  • Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–362.

    PubMed  Google Scholar 

  • Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review Neuroscience, 25, 151–188.

    Article  Google Scholar 

  • Brysbaert, M., & Mitchell, D. C. (1996). Modifier attachment in sentence processing: Evidence from Dutch. Quarterly Journal of Experimental Psychology, 49A, 664–669.

    Article  Google Scholar 

  • Burton, M. (2001). The role of inferior frontal cortex in phonological processing. Cognitive Science, 25, 695–709.

    Article  Google Scholar 

  • Capeza, R., & Nyberg, L. (2000). Neural bases of learning and memory: Functional neuroimaging evidence. Current Opinion in Neurology, 4, 415–421.

    Article  Google Scholar 

  • Caplan, D., Alpert, N., & Waters, G. (1998). Effects of syntactic structure and propositional number on patterns of regional cerebral blood flow. Journal of Cognitive Neuroscience, 10(4), 541–552.

    Article  PubMed  Google Scholar 

  • Caplan, D., Chen, E., & Waters, G. (2008). Task-dependent and task-independent neurovascular responses to syntactic processing. Cortex: A journal devoted to the study of the nervous system and behavior, 44(3), 257–275.

    Article  Google Scholar 

  • Chein, J. M., Ravizza, S. M., & Fiez, J. A. (2003). Using neuroimaging to evaluate models of working memory and their implications for language processing. Journal of Neurolinguistics, 16(4-5), 315–339.

    Article  Google Scholar 

  • Chen, E., West, W. C., Waters, G., & Caplan, D. (2006). Determinants of bold signal correlates of processing object-extracted relative clauses. Cortex: A journal devoted to the study of the nervous system and behavior, 42(4), 591–604.

    Article  Google Scholar 

  • Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris Publications.

    Google Scholar 

  • Chomsky, N. (1986). Knowledge of language: Its nature, origin, and use. New York: Praeger.

    Google Scholar 

  • Cohen D. (1968). Magnetoencephalography: Evidence of magnetic fields produced by alpha rhythm currents. Science, 161, 784–786.

    Google Scholar 

  • Cuetos, F., & Mitchell, D. C. (1988). Cross-linguistic differences in parsing: Restrictions on the use of the Late Closure strategy in Spanish. Cognition, 30(1), 73–105.

    Article  PubMed  Google Scholar 

  • Dapretto, M., & Bookheimer, S. Y. (1999). Form and content: Dissociating syntax and semantics in sentence comprehension. Neuron, 24, 427–432.

    Article  PubMed  Google Scholar 

  • Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H., & Gabrieli, J. D. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. The Journal of Neuroscience, 15(9), 5870–5878.

    PubMed  Google Scholar 

  • Démonet, J.-F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J.-L., Wise, R., Rascol, A., & Frackowiak, R. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain: A journal of neurology, 115(6), 1753–1768.

    Article  Google Scholar 

  • Desmet, T., De, B. C., & Brysbaert, M. (2002). The influence of referential discourse context on modifier attachment in Dutch. Memory & Cognition, 30(1), 150–157.

    Article  Google Scholar 

  • Devauchelle, A.-D., Oppenheim, C., Rizzi, L., Dehaene, S., & Pallier, C. (2009). Sentence syntax and content in the human temporal lobe: An fMRI adaptation study in auditory and visual modalities. Journal of Cognitive Neuroscience, 21(5), 1000–1012.

    Article  PubMed  Google Scholar 

  • Dronkers, N. F., Wilkins, D. P., Redfem, B. B., Van Valin, J. R., & Jaeger, J. J. (1994). A reconsideration of the brain areas involved in the disruption of morphosyntactic comprehension. Brain and Language, 47, 461–463.

    Google Scholar 

  • Embick, D., Marantz, A., Miyashita, Y., O’Neil, W., & Sakai, K. L. (2000). A syntactic specialization in Broca’s area. Proceedings of the National Academy of Science, 97(11), 65150–65154.

    Article  Google Scholar 

  • Felser, C., Marinis, T., & Clahsen, H. (2003). Children’s processing of ambiguous sentences: A study of relative clause attachment. Language Acquisition, 11(3), 127–163.

    Article  Google Scholar 

  • Fiebach, C. J., & Schubotz, R. I. (2006). Dynamic anticipatory processing of hierarchical sequential events: A common role for Broca’s area and ventral premotor cortex across domains? Cortex: A journal devoted to the study of the nervous system and behavior, 42(4), 499–502.

    Article  Google Scholar 

  • Fiez, J. A. (1997). Phonology, semantics, and the role of the left inferior prefrontal cortex. Human Brain Mapping, 5(2), 79–83.

    Article  PubMed  Google Scholar 

  • Ford, M. (1983). A method for obtaining measures of local parsing complexity throughout sentences. Journal of Verbal Learning and Verbal Behavior, 22(2), 203–218.

    Article  Google Scholar 

  • Frazier, L. (1979). On comprehending sentences: Syntactic parsing strategies. Bloomington: Indiana University Linguistics Club.

    Google Scholar 

  • Frazier, L. (1987). Structure in auditory word recognition. Cognition, 25(1-2), 416–422.

    Article  Google Scholar 

  • Frazier, L., & Clifton, C. (1997). Construal: Overview, motivation, and some new evidence. Journal of Psycholinguistic Research, 26(3), 277–295.

    Article  PubMed  Google Scholar 

  • Frazier, L., & Fodor, J. D. (1978). The sausage machine: A new two-stage parsing model. Cognition, 6, 291–325.

    Article  Google Scholar 

  • Gabrieli, J. D. E., Desmond, J. E., Demb, J. B., Wagner, A. D., Stone, M. V., Vaidya, C. J., & Glover, G. H. (1996). Functional magnetic resonance imaging of semantic memory processes in the frontal lobes. Psychological Science, 7(5), 278–283.

    Article  Google Scholar 

  • Gibson, E. (1998). Syntactic complexity: Locality of syntactic dependencies. Cognition, 68(1), 1–76.

    Article  PubMed  Google Scholar 

  • Goodglass, H. (1993). Understanding aphasia. San Diego: Academic Press.

    Google Scholar 

  • Herdener, M., Humbel, T., Esposito, F., Habermeyer, B., Cattapan-Ludewig, K., & Seifritz, E. (2012). Jazz drummers recruit language-specific areas for the processing of rhythmic structure. Cerebral Cortex, 24(3):836–843. (ePrint Nov. 25).

    Article  PubMed  Google Scholar 

  • Hillert, D. (1990). Sprachprozesse und Wissensstrukturen: Neuropsychologische Grundlagen der Kognition [German]. Opladen: Westdeutscher Verlag.

    Book  Google Scholar 

  • Hillert, D. (Ed.) (1994). Linguistics and cognitive neuroscience. Linguistische Berichte, Special Issue 4. Opladen: Westdeutscher Verlag.

    Book  Google Scholar 

  • Hillert, D., & Buračas, G. (2009). The neural substrates of spoken idiom comprehension. Language and Cognitive Processes, 24(9), 1370–1391.

    Article  Google Scholar 

  • Holmes, V. N., & O’Regan, J. K. (1981). Eye fixation patterns during the reading of relative clause sentences. Journal of Verbal Learning and Verbal Behavior, 20, 417–430.

    Article  Google Scholar 

  • Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528.

    Article  PubMed  Google Scholar 

  • Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274(5284), 114–116.

    Article  PubMed  Google Scholar 

  • Kang, A. M., Constable, R. T., Gore, J. C., & Avrutin, S. (1999). An event-related fMRI study of implicit phrase-level syntactic and semantic processing. NeuroImage, 10(5), 555–561.

    Article  PubMed  Google Scholar 

  • Kimball, J. (1973). Seven principles of surface structure parsing in natural language. Cognition, 2, 15–47.

    Article  Google Scholar 

  • King, J., & Just, M. A. (1991). Individual differences in syntactic processing: The role of working memory. Journal of Memory and Language, 30, 580–602.

    Article  Google Scholar 

  • Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D. (2007). Segregating the core computational faculty of human language from working memory. Proceedings of the National Academy of Science, 106(20), 8362–8367.

    Article  Google Scholar 

  • Mazoyer, B. M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., Salamon, G., Dehaene, S., Cohen, L., & Mehler, J. (1993). The cortical representation of speech. Journal of Cognitive Neuroscience, 5(4), 467–479.

    Article  PubMed  Google Scholar 

  • Meltzer, J. A., McArdle, J. J., Schafer, R. J., & Braun, A. R. (2010). Neural Aspects of Sentence Comprehension: Syntactic Complexity, Reversibility, and Reanalysis. Cerebral Cortex, 20(8), 1853–1864. doi:10.1093/cercor/bhp249.

    Google Scholar 

  • Meyer, M., Friederici, A. D., & von Cramon, D. Y. (2000). Neurocognition of auditory sentence comprehension: Event related fMRI reveals sensitivity to syntactic violations and task demands. Brain Research. Cognitive Brain Research, 9(1), 19–33.

    Article  PubMed  Google Scholar 

  • Meyer, L., Obleser, J., & Friederici, A. D. (2013). Left parietal alpha enhancement during working memory-intensive sentence processing. Cortex: A journal devoted to the study of the nervous system and behavior, 49(3), 711–721.

    Article  Google Scholar 

  • Miller, G. A., & Chomsky, N. (1963). Finitary models of language users’. In (Eds.), Luce, R. D., Bush, R. R. & E. Galanter, Handbook of Mathematical Psychology, (vol. II). New York, NY: Wiley: 419–491.

    Google Scholar 

  • Moro, A., Tettamanti, M., Perani, D., Donati, C., Cappa, S. F., & Fazio, F. (2001). Syntax and the brain: Disentangling grammar by selective anomalies. NeuroImage, 13(1), 110–118.

    Article  PubMed  Google Scholar 

  • Musso, M., Moro, A., Glauche, V., Rijntjes, M., Reichenbach, J., Buechel, C., & Weiller, C. (2003). Broca’s area and the language instinct. Nature Neuroscience, 6, 774–781.

    Article  PubMed  Google Scholar 

  • Newman, S. D., Just, M. A., Keller, T. A., Roth, J., & Carpenter, P. A. (2003). Differential effects of syntactic and semantic processing on the subregions of Broca’s area. Cognitive Brain Research, 16(2), 297–307.

    Article  PubMed  Google Scholar 

  • Nicol, J., & Swinney, D. (1989). The role of structure in coreference assignment during sentence comprehension. Journal of Psycholinguistic Research, 18(1), 5–19.

    Article  PubMed  Google Scholar 

  • Obleser, J., & Kotz, S. A. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cerebral Cortex, 20(3), 633–640.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 25–42.

    Article  PubMed  Google Scholar 

  • Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3(1), 85–90.

    Article  PubMed  Google Scholar 

  • Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88.

    Article  PubMed  Google Scholar 

  • Richardson, F. M., Thomas, M. S. C., & Price, C. J. (2010). Neuronal activation for semantically reversible sentences. Journal of Cognitive Neuroscience, 22(6), 1283–1298.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rogalsky, C., & Hickok, G. (2009). Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex. Cerebral Cortex, 19(4), 786–796.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences of the USA, 95(20), 12061–12068.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stromswold, K., Caplan, D., Alpert, N., & Rauch, S. (1996). Localization of syntactic comprehension by positron emission tomography. Brain and Language, 52(3), 452–473.

    Article  PubMed  Google Scholar 

  • Swinney, D. A., & Hakes, D. T. (1976). Effects of prior context upon lexical access during sentence comprehension. Journal of Verbal Learning and Verbal Behavior, 15, 681–689.

    Google Scholar 

  • Tettamanti, M., Rotondi, I., Perani, D., Scotti, G., Fazio, F., Cappa, S. F., & Moro, A. (2009). Syntax without language: Neurobiological evidence for cross-domain syntactic computations. Cortex: A journal devoted to the study of the nervous system and behavior, 45(7), 825–838.

    Article  Google Scholar 

  • Thompson, C. K., Bonakdarpour, B., Fix, S. C., Blumenfeld, H. K., Parrish, T. B., Gitelman, D. R., & Mesulam, M.-M. (2007). Neural correlates of verb argument structure processing. Journal of Cognitive Neuroscience, 19(11), 1753–1767.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94(26), 14792–14797.

    Article  Google Scholar 

  • Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., Papoutsi, M., & Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with left hemisphere damage. Brain: A Journal of Neurology, 134(2), 415–431.

    Article  Google Scholar 

  • Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social sognition. Perspectives on Psychological Science, 4(3), 274–290.

    Article  Google Scholar 

  • Wanner, E., & Maratsos, M. (1978). An ATN approach in comprehension. In M. Halle, J. Bresnan, & G. Miller (Eds.), Linguistic theory and psychological reality (pp. 119–161). Cambridge: MIT Press.

    Google Scholar 

  • Weckerly, J., & Kutas, M. (1999). An electrophysiological analysis of animacy effects in the processing of object relative sentences. Psychophysiology, 36(5), 559–570.

    Article  PubMed  Google Scholar 

  • Zagar, D., Pynte, J., & Rativeau, S. (1997). Evidence for early closure attachment on first-pass reading times in French. Quarterly Journal of Experimental Psychology, 50A, 421–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Hillert .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hillert, D. (2014). Generating Sentences. In: The Nature of Language. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0609-3_9

Download citation

Publish with us

Policies and ethics