Skip to main content

Semantics and Syntax

  • Chapter
  • First Online:
The Nature of Language
  • 1715 Accesses

Abstract

The linguistic description and simulation of semantic and syntactic structures suggested by different theoretical accounts are discussed. We consider thereby established programs including natural/conceptual semantics, cognitive grammar, generative syntax, dependency grammar, and connectionist accounts. It is argued that the distinction between semantic and conceptual representations is a useful approach for empirical research on meanings. In the attempt to simulate sentence processing, neural network models have a certain degree of predictive power. Reverse engineering programs, which built virtual brain libraries, might be a very useful mean to improve our understanding of the neurobiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word orders VSO and OSV also occur, whereas OSV (e.g., Urubú, Brazil) is relatively rare (see Chung 1990; McCloskey 1991) for a discussion of these structures in context of the X’ schema.

  2. 2.

    For simplification, we do not include here grammatical features such as agreement, tense or type of NP.

  3. 3.

    A transfer function can be for instance sigmoidal or hard limited. The sigmoid function takes a net value and generates an output between 0 and 1 and a hard limited function sets for example a fixed range such as < 0.5 = 0; ≥ 0.5 = 1.

  4. 4.

    It should be emphasize that connectionist models include distributed (non-modular) but also sequential (modular) computations, in which different types of data are represented over different groups of units allowing the direct interaction of only specific datasets as in simple recurrent networks.

  5. 5.

    Part of the development of a CA is neural or synaptic death and growth.

References

  • Baker, J. (1979). Trainable grammars for speech recognition. In D. H. Klatt & J. J. Wolf (Eds.), Speech Communication Papers for the 97th Meeting of the Acoustic Society of America, pp. 547–550.

    Google Scholar 

  • Bierwisch, M. (1999). Words in the brain are not just labelled concepts. Behavioral and Brain Sciences, 22(2), 280–282.

    Article  Google Scholar 

  • Chomsky, N. (1970). Remarks on norminalization. In R. Jacobs & P. Rosenbaum (Eds.), Readings in English transformational grammar. Waltham: Ginn.

    Google Scholar 

  • Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris Publications.

    Google Scholar 

  • Chomsky, N. (1995). The minimalist program. Cambridge: MIT Press.

    Google Scholar 

  • Chomsky, N. (2005). Universals of human nature. Psychotherapy and Psychosomatics, 74(5), 263–268.

    Article  PubMed  Google Scholar 

  • Chung, S. (1990). VP’s and verb movement in Chamorro. Natural Language and Linguistic Theory, 8(4), 559–620.

    Article  Google Scholar 

  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.

    Article  Google Scholar 

  • Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2–3), 195–225.

    Google Scholar 

  • Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48(1), 71–99.

    Article  PubMed  Google Scholar 

  • Fauconnier, G. (1985). Mental spaces. Cambridge: MIT Press.

    Google Scholar 

  • Fauconnier, G., & Turner, M. (2002). The way we think. New York: Basic Books.

    Google Scholar 

  • Fillmore, C., Kay, P., & O’Connor, M. (1988). Regularity and idiomaticity in grammatical constructions: The case of let alone. Language, 64(3), 501–538.

    Article  Google Scholar 

  • Fodor, J. A. (1975). The language of thought. New York: Crowell Press.

    Google Scholar 

  • Fodor, J. A. (1981). Representations. Cambridge: MIT Press.

    Google Scholar 

  • Fodor, J. A. (1987). Psychosemantics. Cambridge: MIT Press.

    Google Scholar 

  • Goldberg, A. (1995). Constructions: A construction grammar approach to argument structure. Chicago: University of Chicago Press.

    Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  • Heringer, H. (1996). Deutsche Syntax dependentiell. Tübingen: Stauffenburg [German].

    Google Scholar 

  • Hertz, J. A., Palmer, R. G., & Krogh, A. S. (1991). Introduction to the theory of neural computation. Redwood City: Addison-Wesley.

    Google Scholar 

  • Hillert, D. (1987). Zur Mentalen Repräsentation von Wortbedeutungen: Neuro- und Psycho-linguistische Ãœberlegungen [German]. Tübinger Beiträge Linguistik 290: Tübingen: Gunter Narr Press. (The mental representation of word meanings: neuro- and psycholinguistic considerations)

    Google Scholar 

  • Hillert, D. (1992). Lexical semantics and aphasia: A state-of-the-art review. Journal of Neurolinguistics, 7(1–2), 23–65.

    Article  Google Scholar 

  • Jackendoff, R. (1977). X-bar-Syntax: A study of phrase structure. Cambridge: MIT Press.

    Google Scholar 

  • Jackendoff, R. (1983). Semantics and cognition. Cambridge: MIT Press.

    Google Scholar 

  • Jackendoff, R. (2007). A parallel architecture perspective on language processing. Brain Research, 1146, 2–22.

    Article  PubMed  Google Scholar 

  • Jackendoff, R., & Pinker, S. (2005). The nature of the language faculty and its implications for evolution of language (Reply to Fitch, Hauser, and Chomsky). Cognition, 97, 211–225.

    Article  Google Scholar 

  • Jordan, M. I. (1986). Serial order: A parallel distributed processing approach. ICS UCSD No. 8604.

    Google Scholar 

  • Landauer, T. K. (2007). Handbook of latent semantic analysis. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Langacker, R. W. (1987). Foundations of cognitive grammar: Theoretical prerequisites (Vol. 1). Stanford: Stanford University Press.

    Google Scholar 

  • Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge: MIT Press.

    Google Scholar 

  • Levin, B. (1993). English verb classes and alternations: A preliminary investigation. Chicago University Press.

    Google Scholar 

  • Maltarollo, V. G., Honório, K. M., & Ferreira da Silva, A. B. (2013). Applications of artificial neural networks in chemical problems. In K. Suzuki (Ed.), Artificial neural networks—architectures and applications, InTech, doi:10.5772/51275.

    Google Scholar 

  • Markram, H. (2006). The Blue Brain Project. Nature Reviews Neuroscience, 7, 153–160.

    Article  PubMed  Google Scholar 

  • McCloskey, J. (1991). Clause structure, ellipsis and proper government in Irish. Lingua, 85(2–3), 259–302.

    Article  Google Scholar 

  • Mel’c̆Ìuk, I. A. (1987). Dependency syntax: Theory and practice. Albany: State University Press of New York.

    Google Scholar 

  • Merchant, J. (2001). The syntax of silence. Oxford: Oxford University Press.

    Google Scholar 

  • Pinker, S. (1989). Learnability and cognition: The acquisition of argument structure. Cambridge: MIT Press.

    Google Scholar 

  • Pinker, S. (1994). The language instinct. New York: Harper.

    Google Scholar 

  • Pollard, C., & Sag, I. A. (1994). Head-driven phrase structure grammar. Chicago: University of Chicago Press.

    Google Scholar 

  • Pulvermüller, F. (1999). Words in the brain’s language. The Behavioral and Brain Sciences, 22(2), 253–279.

    Article  PubMed  Google Scholar 

  • Pulvermüller, F. (2002). The neuroscience of language: On brain circuits of words and serial order. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1). Cambridge: MIT Press.

    Google Scholar 

  • Smith, K. (2010). Do the billions of non-neuronal cells in the brain send messages of their own? Nature, 468, 160–162.

    Article  PubMed  Google Scholar 

  • Tesnière, L. (1959). Éléments de syntaxe structural [French]. Paris: Klincksieck.

    Google Scholar 

  • Tiira, T. (1999). Detecting teleseismic events using artificial neural networks. Computers & Geosciences, 25(8), 929–938.

    Article  Google Scholar 

  • Whorf, B. L. (1956). Language, thought, and reality: Selected writings of Benjamin Lee Whorf. Eastford: Martino Fine Books.

    Google Scholar 

  • Wierzbicka, A. (1996). Semantics: Primes and universals. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Hillert .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hillert, D. (2014). Semantics and Syntax. In: The Nature of Language. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0609-3_6

Download citation

Publish with us

Policies and ethics