Skip to main content

Preclinical Foundations: Relevant Anatomy and Physiology

  • Chapter
  • First Online:
Hydroxychloroquine and Chloroquine Retinopathy

Abstract

Reviewing the preclinical science relevant to the mechanisms and risk factors for chloroquine and hydroxychloroquine retinopathy can solidify clinical understanding of that condition. This chapter gathers the scattered and often difficult-to-access pertinent facts and concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4AQs:

4-Aminoquinolines (chloroquine and hydroxychloroquine)

APC:

Antigen presenting cell

4AQR:

4-Aminoquinoline retinopathy

BM:

Bruch’s membrane

BRB:

Blood–retina barrier

C:

Concentration

CpG ODN:

CpG oligodeoxynucleotide

CD:

CD number

CD3:

Cluster of differentiation T3 cell co-receptor

CD74 gene:

Cluster of differentiation 74 gene

D:

Daily dose in mg/kg

DN cells:

Double negative cells

DP cells:

Double positive cells

EC50:

Effective concentration 50 %

ELM:

External limiting membrane

FAZ:

Foveal avascular zone

GCL:

Ganglion cell layer

HLA:

Human leukocyte antigen

IFNα:

Interferon alpha

Ii:

Invariant chain

IκκK complex:

Inhibitor of kappa B kinase complex

IL:

Interleukin

ILM:

Internal limiting membrane

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

IRAK:

Interleukin-1 receptor-associated kinase

IS/OS:

Inner segment/outer segment

K:

Rate constant for elimination

μm:

Micrometer

MHC:

Major histocompatibility complex

miRNA:

MicroRNA

nm:

Nanometer

NEMO:

Nuclear factor-κβ essential modifier regulatory subunit

NF-κβ:

Nuclear factor-κβ

NFL:

Nerve fiber layer

NLRs:

Nucleotide-binding and oligomerizing domain-like receptors

OCT:

Optical coherence tomography

OPL:

Outer plexiform layer

ONL:

Outer nuclear layer

PAMP:

Pathogen-associated molecular pattern

RA:

Rheumatoid arthritis

RCS:

Royal College of Surgeons

RPC:

Radial peripapillary capillary

RPE:

Retinal pigment epithelium

SD-OCT:

Spectral domain optical coherence tomography

SLE:

Systemic lupus erythematosus

SP cells:

Single positive cells

TCR:

T cell receptor

TCR–CD3:

T cell receptor–cluster of differentiation 3T cell co-receptor complex

TD-OCT:

Time domain optical coherence tomography

Th cells:

Helper T cells

Treg cells:

Regulatory T cells

V:

Volume of distribution

VEGF:

Vascular endothelial growth factor

References

  1. Hogan MJ, Alvarado JA, Weddell JE. Retina. Histology of the human eye: an atlas and textbook. Philadelphia: WB Saunders; 1971. p. 393–522.

    Google Scholar 

  2. Curcio CA, Allen KA. Topography of ganglion cells in the human retina. J Comp Neurol. 1990;300:5–25.

    CAS  PubMed  Google Scholar 

  3. Gass JDM. Stereoscopic atlas of macular diseases diagnosis and treatment. St Louis: Mosby-Year Book; 1997. p. 1–599.

    Google Scholar 

  4. Jonas JB, Nguyen NX, Naumann GO. The retinal nerve fiber layer in normal eyes [Abstract]. Ophthalmology. 1989;96:627–32.

    CAS  PubMed  Google Scholar 

  5. Pasadhika S, Fishman GA, Choi D, Shahidi M. Selective thinning of the perifoveal inner retina as an early sign of hydroxychloroquine retinal toxicity. Eye (Lond). 2010;24:756–63.

    CAS  Google Scholar 

  6. Boulton M. Ageing of the retinal pigment epithelium. Prog Retin Eye Res. 1991;11:125–51.

    CAS  Google Scholar 

  7. Davies NP, Morland AB. Macular pigments: their characteristics and putative role. Prog Retin Eye Res. 2004;23:533–59.

    CAS  PubMed  Google Scholar 

  8. Snodderly DM, Brown PK, Delori FC, Auran JD. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci. 1984;25:660–74.

    CAS  PubMed  Google Scholar 

  9. Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci. 1984;25:685.

    Google Scholar 

  10. Anderson C, Blaha GR, Marx JL. Humphrey visual field findings in hydroxychloroquine toxicity. Eye (Lond). 2011;25:1535–45.

    CAS  Google Scholar 

  11. Marmor MF, Chien FY, Johnson MW. Value of red targets and pattern deviation pots in visual field screening for hydroxychloroquine retinopathy. JAMA Ophthalmol. 2013;131:476–80.

    PubMed  Google Scholar 

  12. Jonas JB, Schneider U, Naumann GOH. Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol. 1992;230:505–10.

    CAS  PubMed  Google Scholar 

  13. Pasadhika S, Fishman GA. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye (Lond). 2009;24:340–6.

    Google Scholar 

  14. William M, Hart J, editors. Adler’s physiology of the eye. St. Louis: Mosby; 2003. p. 309–10.

    Google Scholar 

  15. Grover S, Murthy RK, Brar VS, Chalam KV. Comparison of retinal thickness in normal eyes using stratus and spectralis optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:2644–7.

    PubMed  Google Scholar 

  16. Bentaleb-Machkour Z, Jouffroy E, Rabilloud M, Grange JD, Kodjikian L. Comparison of central macular thickness measured by three OCT models and study of interoperator variability. Scientific World Journal. 2012;2012:1–6.

    Google Scholar 

  17. Giani A, Cigada M, Esmaili DD, Salvetti P, Luccarelli S, Marziani E, Luiselli C, Sabella P, Cereda M, Eandi C, Staurenghi G. Artifacts in automatic retinal segmentation using different optical coherence tomography instruments. Retina. 2010;30:607–16.

    PubMed  Google Scholar 

  18. Demirkaya N, van Dijk HW, van Schuppen SM, Abramoff MD, Garvin MK, Sonka M, Schlingemann RO, Verbraak FD. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:4934–40.

    PubMed  Google Scholar 

  19. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odelll D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci. 2011;52:625–34.

    PubMed Central  PubMed  Google Scholar 

  20. Besharse JC, Defoe DM. Role of the retinal pigment epithelium in photoreceptor membrane turnover. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium. New York: Oxford University Press; 1998. p. 152–72.

    Google Scholar 

  21. Bosch E, Horwitz J, Bok D. Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction. J Histochem Cytochem. 1993;41:253–63.

    CAS  PubMed  Google Scholar 

  22. Feeney L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci. 1978;17:583–600.

    CAS  PubMed  Google Scholar 

  23. Smith RS, Berson EL. Acute toxic effects of chloroquine on the cat retina: ultrastructural changes. Invest Ophthalmol Vis Sci. 1971;10:237–46.

    CAS  Google Scholar 

  24. Bok D. Retinal photoreceptor-pigment epithelium interactions. Invest Ophthalmol Vis Sci. 1985;26:1659–94.

    CAS  PubMed  Google Scholar 

  25. Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, Cantz M. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 1999;40:737–43.

    CAS  PubMed  Google Scholar 

  26. Young RW. Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci. 1976;15:725.

    Google Scholar 

  27. Katz ML, Drea CM, Eldred GE, Hess HH, Robison WGJR. Influence of early photoreceptor degeneration on lipofuscin in the retinal pigment epithelium. Exp Eye Res. 1986;43:561–73.

    CAS  PubMed  Google Scholar 

  28. Feeney-Burns L, Hilderbrand ES, Eldridge S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci. 1984;25:195–200.

    CAS  PubMed  Google Scholar 

  29. Cuervo AM, Dice JF. When lysosomes get old. Exp Gerontol. 2000;35:119–31.

    CAS  PubMed  Google Scholar 

  30. Radu RA, Han Y, Bui TV, Nusinowitz S, Bok D, Lichter J, Widder K, Travis GH, Mata NL. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci. 2005;46:4393–401.

    PubMed  Google Scholar 

  31. Eldred GE, Lasky MR. Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature. 1993;361:724–6.

    CAS  PubMed  Google Scholar 

  32. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci. 1999;40:2988–95.

    CAS  PubMed  Google Scholar 

  33. Sparrow JR. Lipofuscin of the retinal pigment epithelium. In: Holz FG, Schmitz-Valckenberg S, Spaide RF, Bird AC, editors. Atlas of fundus autofluorescence imaging. Berlin: Springer; 2007. p. 3–16.

    Google Scholar 

  34. Kellner U, Renner AB, Tillack H. Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine. Invest Ophthalmol Vis Sci. 2006;47:3531–8.

    PubMed  Google Scholar 

  35. Sundelin SP, Terman A. Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells. APMIS. 2002;110:481–9.

    CAS  PubMed  Google Scholar 

  36. Ben-Shabat S, Parish CA, Vollmer HR, Itagaki Y, Fishkin N, Nakanishi K, Sparrow JR. Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin. J Biol Chem. 2002;277:7183–90.

    CAS  PubMed  Google Scholar 

  37. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. Insights into the function of rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell. 1999;98:13–23.

    CAS  PubMed  Google Scholar 

  38. De S, Sakmar TP. Interaction of A2E with model membranes. Implications to the pathogenesis of age-related macular degeneration. J Gen Physiol. 2002;120:147–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME. Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 2000;41:2303–8.

    CAS  PubMed  Google Scholar 

  40. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80:595–606.

    CAS  PubMed  Google Scholar 

  41. Drenckhahn D, Lullmann-Rauch R. Drug-induced lipidosis: differential susceptibilities of pigment epithelium and neuroretina toward several amphiphilic cationic drugs. Exp Mol Pathol. 1978;28:360–71.

    CAS  PubMed  Google Scholar 

  42. Bruinink A, Zimmermann G, Riesen F. Neurotoxic effects of chloroquine in vitro. Arch Toxicol. 1991;65:480–4.

    CAS  PubMed  Google Scholar 

  43. Rosenthal AR, Kolb H, Bergsma D, Huxsoll D, Hopkins JL. Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci. 1978;17:1158–75.

    CAS  PubMed  Google Scholar 

  44. Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011;31:1609–19.

    PubMed Central  PubMed  Google Scholar 

  45. Stepien KE, Han DP, Schell J, Godara P, Rha J, Carroll J. Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. Trans Am Ophthalmol Soc. 2009;107:28–34.

    PubMed Central  PubMed  Google Scholar 

  46. Chen E, Brown DM, Benz MS, Fish RH, Wong TP, Kim RY, Major JC. Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the "flying saucer" sign). Clin Ophthalmol. 2010;4:1151–8.

    PubMed Central  PubMed  Google Scholar 

  47. Osterberg G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. 1935;13:6–97.

    Google Scholar 

  48. Spitznas M. The fine structure of the so-called outer limiting membrane in the human retina. Graefes Arch Clin Exp Ophthalmol. 1970;180:44–56.

    CAS  Google Scholar 

  49. Wong IY, Iu LP, Koizumi H, Lai WW. The inner segment/outer segment junction: what have we learnt so far? Curr Opin Ophthalmol. 2012;23:2010–8.

    Google Scholar 

  50. Rodriguez-Padilla JA, Hedges III TR, Monson B, Srinivasan V, Wojtkowski M, Reichel E, Duker JS, Schuman JS, Fujimoto JG. High-speed ultra-high-resolution optical coherence tomography findings in hydroxychloroquine retinopathy. Arch Ophthalmol. 2007;125:775–80.

    PubMed Central  PubMed  Google Scholar 

  51. Labriola LT, Jeng D, Fawzi AA. Retinal toxicity of systemic medications. Int Ophthalmol Clin. 2012;52:149–66.

    PubMed  Google Scholar 

  52. Tao Y, Li XX, Jiang YR, Bai XB, Wu BD, Dong JQ. Diffusion of macromolecule through retina after experimental branch retinal vein occlusion and estimate of intraretinal barrier [abstract]. Curr Drug Metab. 2007;8:151–6.

    CAS  PubMed  Google Scholar 

  53. Sato S, Hirooka K, Baba T, Tenkumo K, Nitta E, Shiraga F. Correlation between the ganglion cell-inner plexiform layer thickness measured with Cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci. 2013;54:3046–51.

    PubMed  Google Scholar 

  54. Gomez ML, Mojana F, Bartsch DU, Freeman WR. Imaging of long-term retinal damage after resolved cotton wool spots. Ophthalmology. 2009;116:2407–14.

    PubMed  Google Scholar 

  55. Mcleod D. Why cotton wool spots should not be regarded as retinal nerve fiber layer infarcts. Br J Ophthalmol. 2005;89:229–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Raines MF, Bhargava SK, Rosen ES. The blood-retinal barrier in chloroquine retinopathy. Invest Ophthalmol Vis Sci. 1989;30:726–1731.

    Google Scholar 

  57. Penfold PL, Wen L, Madigan MC, Gillies MC, King NJC, Provis JM. Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1 (ICAM-1) expression of the ECV304 cell line: implications for macular degeneration. Clin Exp Immunol. 2000;121:458–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Singh S, Dass R. The central artery of the retina I. Origin and course. Br J Ophthalmol. 1960;44:193–212.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. Br J Ophthalmol. 1967;51:115–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Iwasaki M, Inomata H. Relation between superficial capillaries and foveal structures in the human retina. Invest Ophthalmol Vis Sci. 1986;27:1698–705.

    CAS  PubMed  Google Scholar 

  61. Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci. 1995;15:4738–47.

    CAS  PubMed  Google Scholar 

  62. Gariano RF, Kalina RE, Hendrickson AE. Normal and pathological mechanisms in retinal vascular development. Surv Ophthalmol. 1996;40:481–90.

    CAS  PubMed  Google Scholar 

  63. Gariano RF, Iruela-Arispe ML, Hendrickson AE. Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Invest Ophthalmol Vis Sci. 1994;35:3442–55.

    CAS  PubMed  Google Scholar 

  64. Delves PJ, Martin SJ, Burton DR, Roitt IM. Roitt’s essential immunology. Oxford: Wiley-Blackwell; 2011.

    Google Scholar 

  65. Hennessy EJ, Parker AE, O’Neill LAJ. Targeting toll-like receptors: emerging therapeutics. Rev Drug Discov. 2010;9:293–307.

    CAS  Google Scholar 

  66. Kyburz D, Brentano F, Gay S. Mode of action of hydroxychloroquine in RA—evidence of an inhibitory effect on toll-like receptor signaling. Nat Clin Pract Rheumatol. 2006;2:458–9.

    PubMed  Google Scholar 

  67. Katz SJ, Russell AS. Re-evaluation of antimalarials in treating rheumatic diseases: re-appreciation and insights into new mechanisms of action. Curr Eye Res. 2011;23:278–81.

    CAS  Google Scholar 

  68. Wallace DJ, Gudsoorkar VS, Weisman MH, Venuturupalli SR. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol. 2012;8:522–33.

    CAS  PubMed  Google Scholar 

  69. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, Chang B, Duramad O, Coffman RL. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202:1131–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Schlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416:603–7.

    CAS  PubMed  Google Scholar 

  71. Kalia S, Dutz JP. New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther. 2007;20:160–74.

    PubMed  Google Scholar 

  72. Goldman FD, Gilman AL, Hollenback C, Kato RM, Premack BA, Rawlings DJ. Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood. 2000;95:3460–8.

    CAS  PubMed  Google Scholar 

  73. Fox R. Anti-malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus. 1996;5:S4–S10.

    CAS  PubMed  Google Scholar 

  74. Schultz KR, Gilman AL. The lysosomotropic amines, chloroquine and hydroxychloroquine: a potentially novel therapy for graft-versus-host disease. Leuk Lymphoma. 1997;24:201–10.

    CAS  PubMed  Google Scholar 

  75. Cruz da Silva J, Mariz HA, da Rocha Jr LF, de Oliveira PSS, Dantas AT, Duarte ALBP, Pitta IDR, Galdino SL, Pitta MGDR. Hydroxychloroquine decreases TH17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics. 2013;68:766–71.

    Google Scholar 

  76. Maddur MS, Miossec P, Kaveri SV, Bayry J. Th 17 cells. Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J. Pathology. 2012;181:8–18.

    CAS  Google Scholar 

  77. Ferreira da Rocha Jr L, Duarte ALBP, Dantas AT, Mariz HA, Pitta IDR, Galdino SL, Pitta MGDR. Increased serum interleukin 22 in patients with rheumatoid arthritis and correlation with disease activity. J Rheumatol. 2012;39:1320–5.

    CAS  Google Scholar 

  78. Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, Kang I. Dysregulated balance of TH17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R53–63.

    PubMed Central  PubMed  Google Scholar 

  79. Weber SM, Levitz SM. Chloroquine Interferes with lipopolysaccharide-induced TNF-α gene expression by a nonlysosomotropic mechanism. J Immunol. 2000;165:1534–40.

    CAS  PubMed  Google Scholar 

  80. Wozniacka A, Lesiak A, Narbutt J, McCauliffe DP, Sysa-Jedrzejowska A. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus. 2006;15:268–75.

    CAS  PubMed  Google Scholar 

  81. Karres I, Kremer JP, Dietl I, Steckholzer U, Jochum M, Ertel W. Chloroquine inhibits proinflammatory cytokine release into human whole blood. Am J Physiol. 1998;274:R1058–64.

    CAS  PubMed  Google Scholar 

  82. Sant AJ, Miller J. MHC class II antigen processing: biology of invariant chain. Curr Opin Immunol. 1994;6:57–63.

    CAS  PubMed  Google Scholar 

  83. Zarbin MA. Recombinant T-cell receptor ligands in the treatment of uveitis. Arch Ophthalmol. 2013;131:399–400.

    CAS  Google Scholar 

  84. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol. 1997;15:821–50.

    CAS  PubMed  Google Scholar 

  85. Nowell J, Quaranta V. Chloroquine affects biosynthesis of Ia Molecules by inhibiting dissociation of invariant chains from α − β dimers in B cells. J Exp Med. 1985;162:1371–6.

    CAS  PubMed  Google Scholar 

  86. Loss Jr GE, Sant AJ. Invariant chain retains MHC class II molecules in the endocytic pathway. J Immunol. 1993;150:3187–97.

    CAS  PubMed  Google Scholar 

  87. Ziegler HK, Unanue ER. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci U S A. 1982;79:175–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Moorthy RS, Rao PK, Read RW, Van Gelder RN, Vitale AT, Bodaghi B, Parrish CM. Intraocular inflammation and uveitis. San Francisco: American Academy of Ophthalmology; 2012. p. 38–9.

    Google Scholar 

  89. Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, et al. Chloroquine enhances human CD8 T cell responses against soluble antigens in vivo. J Exp Med. 2005;202:817–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kleijmeer MJ, Ossevoort MS, van Veen CJH, van Hellemond JJ, Neefjes JJ, Kast WM, Melief CJM, Geuze HJ. MHC class II compartments and the kinetics of antigen presentation in activated mouse spleen dendritic cells. J Immunol. 1995;154:5715–24.

    CAS  PubMed  Google Scholar 

  91. Maric MA, Taylor MD, Blum JS. Endosomal aspartic proteinases are required for invariant-chain processing. Proc Natl Acad Sci U S A. 1994;91:2171–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Titus EO. Recent developments in the understanding of the pharmacokinetics and mechanism of action of chloroquine. Ther Drug Monit. 1989;11:369–79.

    CAS  PubMed  Google Scholar 

  93. Koch N, Moldenhauer G, Hofmann WJ, Moller P. Rapid intracellular pathway gives rise to cell surface expression of the MHC class II-associated invariant chain (CD74). J Immunol. 1991;147:2643–51.

    CAS  PubMed  Google Scholar 

  94. Akhavan PS, Su J, Lou W, Gladman DD, Urowitz MB, Fortin PR. The early protective effect of hydroxychloroquine on the risk of cumulative damage in patients with systemic lupus erythematosus. J Rheumatol. 2013;40:831–41.

    CAS  PubMed  Google Scholar 

  95. Yu Z, Kastenmuller G, He Y, Belcredi P, Moller G, Prehn C, Mendes J, et al. Differences between human plasma and serum metabolite profiles. PLoS One. 2011;6:e21230. doi:10.1371/journal.pone.0021230.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96:729–46.

    CAS  PubMed  Google Scholar 

  97. Oda K, Koriyama Y, Yamada E, Ikehara Y. Effects of weakly basic amines on proteolytic processing and terminal glycosylation of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986;240:739–45.

    CAS  Google Scholar 

  98. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Lysosomotropic agents. Biochem Pharmacol. 1974;23:2495–531.

    PubMed  Google Scholar 

  99. Goldstein A, Aronow L, Kalman SM. Principles of drug action: the basis of pharmacology. New York: John Wiley and Sons; 2013.

    Google Scholar 

  100. Chloroquine. DrugBank: open data drug & drug target database. 2005. http://www.drugbank.ca/drugs/DB00608. Accessed 22 Aug 2013.

  101. Hydroxychloroquine. DrugBank: open data drug & drug target database. 2007. http://www.drugbank.ca/drugs/DB01611. Accessed 22 Aug 2013.

  102. Ward PA. The chemosuppression of chemotaxis. J Exp Med. 1966;124:209–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Klaassen CD, Watkins III JB. Casarett and Doull’s essentials of toxicology. New York: McGraw Hill; 2010.

    Google Scholar 

  104. McChesney EQ, Fitch CD. 4-Aminoquinolines. In: Richards WHG, Peters W, editors. Antimalarial drugs II. Current antimalarials and new drug developments. Berlin: Springer; 1984. p. 3–60.

    Google Scholar 

  105. Mackenzie AH. Antimalarial drugs for rheumatoid arthritis. Am J Med. 1983;75:48–58.

    CAS  PubMed  Google Scholar 

  106. Shargel L, Wu-Pong S, Yu ABC. Applied biopharmaceutics and pharmacokinetics. New York: McGraw Hill Medical; 2012. p. 153–75.

    Google Scholar 

  107. Frisk-Holmberg M, Bergkvist Y, Domeij-Nyberg B, Hellstrom L, Jansson R. Chloroquine serum concentration and side effects: evidence for dose dependent kinetics. Clin Pharmacol Ther. 1979;25:345–50.

    CAS  PubMed  Google Scholar 

  108. Miller DR, Fiechtner JJ, Carpenter JR, Brown RR, Stroshane RM, Stecher VJ. Plasma hydroxychloroquine concentrations and efficacy in rheumatoid arthritis. Arthritis Rheum. 1987;30:567–71.

    CAS  PubMed  Google Scholar 

  109. Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J, Dietz F, Ettlinger R, Golden HE, Lindsley H, et al. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46:1460–9.

    CAS  PubMed  Google Scholar 

  110. Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics. Concepts and applications. Philadelphia: Wolters Kluwer; 2011. p. 579.

    Google Scholar 

  111. Furst DE, Lindsley H, Baethge B, Botstein GR, Caldwell J, Dietz F, Ettlinger R, Golden HE, McLaughlin GE, Moreland LW, et al. Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis. Arthritis Rheum. 1999;42:357–65.

    CAS  PubMed  Google Scholar 

  112. Tett S, Cutler D, Day R. Antimalarials in rheumatic diseases. Baillieres Clin Rheumatol. 1990;4:467–89.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Browning, D.J. (2014). Preclinical Foundations: Relevant Anatomy and Physiology. In: Hydroxychloroquine and Chloroquine Retinopathy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0597-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0597-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0596-6

  • Online ISBN: 978-1-4939-0597-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics