Skip to main content

Air Pollution and Oxidative Stress in Allergic Airway Diseases

  • Chapter
  • First Online:
Studies on Respiratory Disorders

Abstract

With 30–40 % of the world’s population suffering from allergic diseases and with the increasing trends of this noncommunicable disease, especially in children in both the developed and developing, allergic diseases comprise a global public health issue. The increase in prevalence of allergic diseases contributes to reduced quality of life of the patients and increased socioeconomic costs. Several factors contribute to this rise in prevalence of allergic diseases including less exposure to infections in early life, change in lifestyles, urbanization, environmental pollution, climate change, and reduced biodiversity. Epidemiological and toxicology studies have demonstrated that air pollution-induced oxidative stress is increased in allergic airway diseases like asthma, and this can be a critical contributor to asthma development and can initiate various intracellular signaling pathways that lead to a break in immune tolerance and exaggerated allergic inflammation. Controlling environmental trigger factors, air pollution, and subsequent oxidative stress is critical for effectively managing and reducing the burden of allergic airway diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pawankar R, Canonica GW, Holgate ST, Lockey RF (2011) WAO white book on allergy. World Allergy Organization, Milwaukee, p 216

    Google Scholar 

  2. Saxon A, Diaz-Sanchez D (2005) Air pollution and allergy: you are what you breathe. Nat Immunol 6:223–226

    Article  PubMed  CAS  Google Scholar 

  3. Takizawa H (2004) Diesel exhaust particles and their effect on induced cytokine expression in human bronchial epithelial cells. Curr Opin Allergy Clin Immunol 4:355–359

    Article  PubMed  CAS  Google Scholar 

  4. Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A (2010) Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 14:809–821

    PubMed  CAS  Google Scholar 

  5. Escamilla-Nunez MC, Barraza-Villarreal A, Hernandez-Cadena L et al (2008) Traffic-related air pollution and respiratory symptoms among asthmatic children, resident in Mexico City: the EVA cohort study. Respir Res 9:74

    Article  PubMed Central  PubMed  Google Scholar 

  6. Penttinen P, Vallius M, Tiittanen P, Ruuskanen J, Pekkanen J (2006) Source-specific fine particles in urban air and respiratory function among adult asthmatics. Inhal Toxicol 18:191–198

    Article  PubMed  CAS  Google Scholar 

  7. Dockery DW, Pope CA III, Xu X et al (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    Article  PubMed  CAS  Google Scholar 

  8. McDonnell WF, Horstman DH, Hazucha MJ et al (1983) Pulmonary effects of ozone exposure during exercise: dose-response characteristics. J Appl Physiol 54:1345–1352

    PubMed  CAS  Google Scholar 

  9. Kulle TJ, Sauder LR, Hebel JR, Chatham MD (1985) Ozone response relationships in healthy nonsmokers. Am Rev Respir Dis 132:36–41

    PubMed  CAS  Google Scholar 

  10. Kinney PL, Thurston GD, Raizenne M (1996) The effects of ambient ozone on lung function in children: a reanalysis of six summer camp studies. Environ Health Perspect 104:170–174

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Peters JM, Avol E, Gauderman WJ et al (1999) A study of twelve Southern California communities with differing levels and types of air pollution. II. Effects on pulmonary function. Am J Respir Crit Care Med 159:768–775

    Article  PubMed  CAS  Google Scholar 

  12. Gauderman WJ, Avol E, Gilliland F et al (2004) The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 351:1057–1067

    Article  PubMed  CAS  Google Scholar 

  13. Ackermann-Liebrich U, Leuenberger P, Schwartz J et al (1997) Lung function and long term exposure to air pollutants in Switzerland: Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Am J Respir Crit Care Med 155:122–129

    Article  PubMed  CAS  Google Scholar 

  14. Rosenlund M, Forastiere F, Porta D, De Sario M, Badaloni C, Perucci CA (2009) Traffic-related air pollution in relation to respiratory symptoms, allergic sensitisation and lung function in schoolchildren. Thorax 64:573–580

    Article  PubMed  CAS  Google Scholar 

  15. Avol EL, Gauderman WJ, Tan SM, London SJ, Peters JM (2001) Respiratory effects of relocating to areas of differing air pollution levels. Am J Respir Crit Care Med 164: 2067–2072

    Article  PubMed  CAS  Google Scholar 

  16. Schindler C, Keidel D, Gerbase MW et al (2009) Improvements in PM10 exposure and reduced rates of respiratory symptoms in a cohort of Swiss adults (SAPALDIA). Am J Respir Crit Care Med 179:579–587

    Article  PubMed  Google Scholar 

  17. Bayer-Oglesby L, Grize L, Gassner M et al (2005) Decline of ambient air pollution levels and improved respiratory health in Swiss children. Environ Health Perspect 113:1632–1637

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F (2004) Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA 292:2372–2378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Gent JF, Triche EW, Holford TR, Belanger K, Bracken MB, Beckett WS, Leaderer BP (2003) Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA 290:1859–1867

    Article  PubMed  CAS  Google Scholar 

  20. Gold DR, Damokosh AI, Pope CA III, Dockery DW, McDonnell WF, Serrano P, Retama A, Castillejos M (1999) Particulate and ozone pollutant effects on the respiratory function of children in southwest Mexico City. Epidemiology 10:8–16

    Article  PubMed  CAS  Google Scholar 

  21. White MC, Etzel RA, Wilcox WD, Lloyd C (1994) Exacerbations of childhood asthma and ozone pollution in Atlanta. Environ Res 65:56–68

    Article  PubMed  CAS  Google Scholar 

  22. Silverman RA, Ito K (2010) Age-related association of fine particles and ozone with severe acute asthma in New York City. J Allergy Clin Immunol 125:367–373

    Article  PubMed  CAS  Google Scholar 

  23. Cakmak S, Dales RE, Coates F (2012) Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immunol 129(1):228–231

    Article  PubMed  CAS  Google Scholar 

  24. Pope CA III (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(suppl 4):713–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Portnov BA, Reiser B, Karkabi K, Cohen-Kastel O, Dubnov J (2012) High prevalence of childhood asthma in Northern Israel is linked to air pollution by particulate matter: evidence from GIS analysis and Bayesian Model Averaging. Int J Environ Health Res 22(3):249–269

    Article  PubMed  CAS  Google Scholar 

  26. Riedl M, Diaz-Sanchez D (2005) Biology of diesel exhaust effects on respiratory function. J Allergy Clin Immunol 115:221–228

    Article  PubMed  CAS  Google Scholar 

  27. Diaz-Sanchez D (1997) The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 52(38 suppl):52–56

    Article  PubMed  CAS  Google Scholar 

  28. Xu GB, Yu CP (1987) Deposition of diesel exhaust particles in mammalian lungs: a comparison between rodents and man. Aerosol Sci Technol 7:117–123

    Article  CAS  Google Scholar 

  29. Boland S, Baeza-Squiban A, Fournier T et al (1999) Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am J Physiol 276(4 pt 1):L604–L613

    PubMed  CAS  Google Scholar 

  30. Rylander R (2002) Endotoxin in the environment—exposure and effects. J Endotoxin Res 8:241–252

    PubMed  CAS  Google Scholar 

  31. Thorne PS, Kulhankova K, Yin M, Cohn R, Arbes SJ Jr, Zeldin DC (2005) Endotoxin exposure is a risk factor for asthma: the national survey of endotoxin in United States housing. Am J Respir Crit Care Med 172:1371–1377

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ryan PH, Bernstein DI, Lockey J, Reponen T, Levin L, Grinshpun S, Villareal M, Hershey GK, Burkle J, LeMasters G (2009) Exposure to traffic-related particles and endotoxin during infancy is associated with wheezing at age 3 years. Am J Respir Crit Care Med 180: 1068–1075

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Mendy A, Gasana J, Vieira ER, Forno E, Patel J, Kadam P, Ramirez G (2011) Endotoxin exposure and childhood wheeze and asthma: a meta-analysis of observational studies. J Asthma 48:685–693

    Article  PubMed  CAS  Google Scholar 

  34. Cho HY, Kleeberger SR (2007) Genetic mechanisms of susceptibility to oxidative lung injury in mice. Free Radic Biol Med 42:433–445

    Article  PubMed  CAS  Google Scholar 

  35. Hollingsworth JW II, Cook DN, Brass DM, Walker JK, Morgan DL, Foster WM, Schwartz DA (2004) The role of Toll-like receptor 4 in environmental airway injury in mice. Am J Respir Crit Care Med 170:126–132

    Article  PubMed  Google Scholar 

  36. Kleeberger SR, Reddy S, Zhang LY, Jedlicka AE (2000) Genetic susceptibility to ozone-induced lung hyperpermeability: role of toll-like receptor 4. Am J Respir Cell Mol Biol 22:620–627

    Article  PubMed  CAS  Google Scholar 

  37. Erridge C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87:989–999

    Article  PubMed  CAS  Google Scholar 

  38. Garantziotis S, Li Z, Potts EN, Lindsey JY, Stober VP, Polosukhin VV, Blackwell TS, Schwartz DA, Foster WM, Hollingsworth JW (2010) TLR4 is necessary for hyaluronan-mediated airway hyperresponsiveness after ozone inhalation. Am J Respir Crit Care Med 181(7):666–675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Garantziotis S, Li Z, Potts EN, Kimata K, Zhuo L, Morgan DL, Savani RC, Noble PW, Foster WM, Schwartz DA et al (2009) Hyaluronan mediates ozone-induced airway hyperresponsiveness in mice. J Biol Chem 284:11309–11317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA et al (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179

    Article  PubMed  CAS  Google Scholar 

  41. Taylor KR, Yamasaki K, Radek KA, Di Nardo A, Goodarzi H, Golenbock D, Beutler B, Gallo RL (2007) Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem 282: 18265–18275

    Article  PubMed  CAS  Google Scholar 

  42. Casalino-Matsuda SM, Monzon ME, Conner GE, Salathe M, Forteza RM (2004) Role of hyaluronan and reactive oxygen species in tissue kallikrein-mediated epidermal growth factor receptor activation in human airways. J Biol Chem 279:21606–22161

    Article  PubMed  CAS  Google Scholar 

  43. Manzanares D, Monzon ME, Savani RC, Salathe M (2007) Apical oxidative hyaluronan degradation stimulates airway ciliary beating via RHAMM and RON. Am J Respir Cell Mol Biol 37:160–168

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Monzon ME, Manzanares D, Schmid N, Casalino-Matsuda SM, Forteza RM (2008) Hyaluronidase expression and activity is regulated by pro-inflammatory cytokines in human airway epithelial cells. Am J Respir Cell Mol Biol 39:289–295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Jiang D, Liang J, Li Y, Noble PW (2006) The role of Toll-like receptors in non-infectious lung injury. Cell Res 16:693–701

    Article  PubMed  CAS  Google Scholar 

  46. Hernandez ML, Lay JC, Harris B, Esther CR Jr, Brickey WJ, Bromberg PA, Diaz-Sanchez D, Devlin RB, Kleeberger SR, Alexis NE et al (2010) Atopic asthmatic subjects but not atopic subjects without asthma have enhanced inflammatory response to ozone. J Allergy Clin Immunol 126:537–544

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Peden DB, Boehlecke B, Horstman D, Devlin R (1997) Prolonged acute exposure to 0. 16 ppm ozone induces eosinophilic airway inflammation in asthmatic subjects with allergies. J Allergy Clin Immunol 100:802–808

    Article  PubMed  CAS  Google Scholar 

  48. Vagaggini B, Taccola M, Cianchetti S, Carnevali S, Bartoli ML, Bacci E, Dente FL, Di Franco A, Giannini D, Paggiaro PL (2002) Ozone exposure increases eosinophilic airway response induced by previous allergen challenge. Am J Respir Crit Care Med 166:1073–1077

    Article  PubMed  Google Scholar 

  49. Kehrl HR, Peden DB, Ball B, Folinsbee LJ, Horstman D (1999) Increased specific airway reactivity of persons with mild allergic asthma after 7.6 hours of exposure to 0. 16 ppm ozone. J Allergy Clin Immunol 104:1198–1204

    Article  PubMed  CAS  Google Scholar 

  50. Hernandez M, Brickey WJ, Alexis NE, Fry RC, Rager JE, Zou B, Ting JPY, Zhou H, Peden DB (2012) Airway cells from atopic asthmatics exposed to ozone display an enhanced innate immune gene profile. J Allergy Clin Immunol 129(1):259–261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Lin S, Liu X, Le LH, Hwang SA (2008) Chronic exposure to ambient ozone and asthma hospital admissions among children. Environ Health Perspect 116:1725–1730

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Meng YY, Rull RP, Wilhelm M, Lombardi C, Balmes J, Ritz B (2010) Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health 64:142–147

    Article  PubMed  Google Scholar 

  53. Just J, Ségala C, Sahraoui F, Priol G, Grimfeld A, Neukirch F (2002) Short-term health effects of particulate and photochemical air pollution in asthmatic children. Eur Respir J 20:899–906

    Article  PubMed  CAS  Google Scholar 

  54. Dillon MA, Harris B, Hernandez ML, Zou B, Reed W, Bromberg PA, Devlin RB, Diaz-Sanchez D, Kleeberger S, Zhou H et al (2011) Enhancement of systemic and sputum granulocyte response to inhaled endotoxin in people with the GSTM1 null genotype. Occup Environ Med 68:783–785

    Article  PubMed  CAS  Google Scholar 

  55. Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D (2004) Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 363:119–125

    Article  PubMed  CAS  Google Scholar 

  56. Gilliland FD, Li YF, Gong H Jr, Diaz-Sanchez D (2006) Glutathione s-transferases M1 and P1 prevent aggravation of allergic responses by secondhand smoke. Am J Respir Crit Care Med 174:1335–1341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Alexis NE, Zhou H, Lay JC, Harris B, Hernandez ML, Lu TS, Bromberg PA, Diaz-Sanchez D, Devlin RB, Kleeberger SR et al (2009) The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in human subjects. J Allergy Clin Immunol 124:1222–1228

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Wu W, Doreswamy V, Diaz-Sanchez D, Samet JM, Kesic M, Dailey L, Zhang W, Jaspers I, Peden DB (2011) GSTM1 modulation of IL-8 expression in human bronchial epithelial cells exposed to ozone. Free Radic Biol Med 51:522–529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Lipsett M, Hurley S, Ostro B (1997) Air pollution and emergency room visits for asthma in Santa Clara County, California. Environ Health Perspect 105:216–222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Gauderman WJ, Avol E, Lurmann F et al (2005) Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 16:737–743

    Article  PubMed  Google Scholar 

  61. Tunnicliffe WS, Burge PS, Ayres JG (1994) Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. Lancet 344:1733–1736

    Article  PubMed  CAS  Google Scholar 

  62. Strand V, Svartengren M, Rak S, Barck C, Bylin G (1998) Repeated exposure to an ambient level of NO2 enhances asthmatic response to a nonsymptomatic allergen dose. Eur Respir J 12: 6–12

    Article  PubMed  CAS  Google Scholar 

  63. Balmes JR, Earnest G, Katz PP et al (2009) Exposure to traffic: lung function and health status in adults with asthma. J Allergy Clin Immunol 123:626–631

    Article  PubMed Central  PubMed  Google Scholar 

  64. McCreanor J, Cullinan P, Nieuwenhuijsen MJ et al (2007) Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 357:2348–2358

    Article  PubMed  CAS  Google Scholar 

  65. Brauer M, Hoek G, Smit HA et al (2007) Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J 29:879–888

    Article  PubMed  CAS  Google Scholar 

  66. Morgenstern V, Zutavern A, Cyrys J et al (2008) Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 177: 1331–1337

    Article  PubMed  Google Scholar 

  67. Nordling E, Berglind N, Melen E et al (2008) Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology 19:401–408

    Article  PubMed  Google Scholar 

  68. Shima M, Nitta Y, Ando M, Adachi M (2002) Effects of air pollution on the prevalence and incidence of asthma in children. Arch Environ Health 57:529–535

    Article  PubMed  CAS  Google Scholar 

  69. Ohtoshi T, Takizawa H, Okazaki H et al (1998) Diesel exhaust particles stimulate human airway epithelial cells to produce cytokines relevant to airway inflammation in vitro. J Allergy Clin Immunol 101(6 pt 1):778–785

    Article  PubMed  CAS  Google Scholar 

  70. Bayram H, Devalia JL, Khair OA et al (1998) Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J Allergy Clin Immunol 102:771–782

    Article  PubMed  CAS  Google Scholar 

  71. Takizawa H, Abe S, Ohtoshi T et al (2000) Diesel exhaust particles up-regulate expression of intercellular adhesion molecule-1 (ICAM-1) in human bronchial epithelial cells. Clin Exp Immunol 120:356–362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Takizawa H, Ohtoshi T, Kawasaki S et al (1999) Diesel exhaust particles induce NF-kappa B activation in human bronchial epithelial cells in vitro: importance in cytokine transcription. J Immunol 162:4705–4711

    PubMed  CAS  Google Scholar 

  73. Takizawa H, Abe S, Okazaki H et al (2003) Diesel exhaust particles upregulate eotaxin gene expression in human bronchial epithelial cells via nuclear factor-kappa B-dependent pathway. Am J Physiol Lung Cell Mol Physiol 284:L1055–L1062

    PubMed  CAS  Google Scholar 

  74. Bommel H, Haake M, Luft P et al (2003) The diesel exhaust component pyrene induces expression of IL-8 but not of eotaxin. Int Immunopharmacol 3:1371–1379

    Article  PubMed  CAS  Google Scholar 

  75. Hashimoto S, Gon Y, Takeshita I et al (2000) Diesel exhaust particles activate p38 MAP kinase to produce interleukin 8 and RANTES by human bronchial epithelial cells and N-acetylcysteine attenuates p38 MAP kinase activation. Am J Respir Crit Care Med 161:280–285

    Article  PubMed  CAS  Google Scholar 

  76. Boland S, Bonvallot V, Fournier T, Baeza-Squiban A, Aubier M, Marano F (2000) Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 278:L25–L32

    PubMed  CAS  Google Scholar 

  77. Li N, Wang M, Oberley TD, Sempf JM, Nel AE (2002) Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J Immunol 169:4531–4541

    Article  PubMed  CAS  Google Scholar 

  78. Takizawa R, Pawankar R, Yamagishi S, Takenaka H, Yagi T (2007) Increased expression of HLA-DR and CD86 in nasal epithelial cells in allergic rhinitics: antigen presentation to T cells and upregulation by diesel exhaust particles. Clin Exp Allergy 37(3):420–433

    Article  PubMed  CAS  Google Scholar 

  79. Zhang Q, Kleeberger SR, Reddy SP (2004) DEP-induced fra-1 expression correlates with a distinct activation of AP-1-dependent gene transcription in the lung. Am J Physiol Lung Cell Mol Physiol 286:L427–L436

    Article  PubMed  CAS  Google Scholar 

  80. Blanchet S, Ramgolam K, Baulig A, Marano F, Baeza-Squiban A (2004) Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol 30:421–427

    Article  PubMed  CAS  Google Scholar 

  81. Pourazar J, Blomberg A, Kelly FJ et al (2008) Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part Fibre Toxicol 5:8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Di Giampaolo L, Quecchia C, Schiavone C et al (2011) Environmental pollution and asthma. Int J Immunopathol Pharmacol 24(1 suppl):31S–38S

    PubMed  Google Scholar 

  83. Xu X, Kherada N, Hong X et al (2009) Diesel exhaust exposure induces angiogenesis. Toxicol Lett 191:57–68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Takizawa H, Ohtoshi T, Kawasaki S et al (1999) Diesel exhaust particles induce NF-kappa B activation in human bronchial epithelial cells in vitro: importance in cytokine transcription. Immunology 162:4705–4711

    CAS  Google Scholar 

  85. Bonvallot V, Baeza-Squiban A, Baulig A et al (2001) Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol 25:515–521

    Article  PubMed  CAS  Google Scholar 

  86. Tal TL, Simmons SO, Silbajoris R et al (2010) Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles. Toxicol Appl Pharmacol 243:46–54

    Article  PubMed  CAS  Google Scholar 

  87. Kawasaki S, Takizawa H, Takami K et al (2001) Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol 24:419–426

    Article  PubMed  CAS  Google Scholar 

  88. Li YJ, Takizawa H, Azuma A et al (2008) Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induces by low-dose diesel exhaust particles in mice. Clin Immunol 128:366–373

    Article  PubMed  CAS  Google Scholar 

  89. Rangasamy T, Guo J, Mitzner WA et al (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202:47–59

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Pawankar M.D., Ph.D., F.R.C.P., F.A.A.A.A.I. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pawankar, R., Ozu, C., Hayashi, M., Yamanishi, S. (2014). Air Pollution and Oxidative Stress in Allergic Airway Diseases. In: Ganguly, N., Jindal, S., Biswal, S., Barnes, P., Pawankar, R. (eds) Studies on Respiratory Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0497-6_9

Download citation

Publish with us

Policies and ethics