Skip to main content

Modeling Immune-Mediated Tumor Growth and Treatment

  • Chapter
  • First Online:
Mathematical Oncology 2013

Abstract

The immune response is an important factor in the progression of cancer, and this response has been harnessed in a variety of treatments for a range of cancers. In this chapter we develop mathematical models that describe the immune response to the presence of a tumor. We then use these models to explore a variety of immunotherapy treatments, both alone and in combination with other therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In references [39] and [27], the authors choose to use α 2 instead of α, since α 2 reflects the squared form of the dimensional terms it replaces. For clarity, we simply use α here.

References

  1. J.A., Adam, N. Bellomo, A Survey of Models for Tumor Immune Systems Dynamics (Springer, Newyork, 1997)

    Google Scholar 

  2. T. Alarcon, H. Byrne, P. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)

    Article  MathSciNet  Google Scholar 

  3. G. Alatrash, H. Jakher, P.D. Stafford, E.A. Mittendorf, Cancer immunotherapies, their safety and toxicity. Expert Opin. Drug Saf. 12, 631–645 (2013)

    Article  Google Scholar 

  4. N. Bellomo, A. Bellouquid, M. Delitala, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition. Math. Models Methods Appl. Sci. 14(11), 1683–1733 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Model. 32(3), 413–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Cappuccio, M. Elishmereni,, Z. Agur, Cancer immunotherapy by interleukin-21: potential treatment strategies evaluated in a mathematical model. Cancer Res. 66(14), 7293–7300 (2006)

    Article  Google Scholar 

  7. G. Caravagna, A. d’Onofrio, P. Milazzo, R. Barbuti, Tumour suppression by immune system through stochastic oscillations. J. Theor. Biol. 265(3), 336–345 (2010)

    Google Scholar 

  8. A. Cerwenker, L. Lanier, Natural killer cells, viruses and cancer. Nat. Immunol. 41–48 (2001)

    Google Scholar 

  9. M.A. Cheever, PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 35203,526 (2011)

    Article  Google Scholar 

  10. S.E. Clare, F. Nakhlis, J.C. Panetta, Molecular biology of breast cancer metastasis: The use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer. Breast Cancer Res. 2, 430–435 (2000)

    Article  Google Scholar 

  11. D. Cunningham, Y. Humblet, S. Siena, Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–45 (2004)

    Article  Google Scholar 

  12. L. de Pillis, D. Mallet, A. Radunskaya, Spatial tumor-immune modeling. Comput. Math. Methods Med. 7(2–3), 159–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. de Pillis, A. Radunskaya, H. Savage, Mathematical model of colorectal cancer with monoclonal antibody treatments. URL http://arxiv.org/abs/1312.3023. Preprint

  14. L. de Pillis, A.E. Radunskaya, The dynamics of an optimally controlled tumor model: A case study. Math. Comput. Model. (Special Issues) 37(11), 12211,244 (2003)

    Google Scholar 

  15. L.G. de Pillis, A.E. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: An optimal control approach. J. Theor. Med. 3, 79–100 (2001)

    Article  MATH  Google Scholar 

  16. L.G., de Pillis, A.E. Radunskaya, C.L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005)

    Google Scholar 

  17. V.J. De Vita, S. Hellman, S. Rosenberg, Cancer: Principles and Practice of Oncology, 7 edn. (Lippincott Wiliams & Wilkins, Sydney 2000)

    Google Scholar 

  18. A. Diefenbach, E.R. Jensen, A.M. Jamieson, D.H.: Raulet, Rae1 and h60 ligands of the nkg2d receptor stimulate tumour immunity. Nature 413(6852), 165–171 (2001)

    Google Scholar 

  19. A. d’Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Phys. D 208(3), 220–235 (2005)

    Google Scholar 

  20. A. d’Onofrio, Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. Math. Comput. Model. 47(5), 614–637 (2008)

    Google Scholar 

  21. A. d’Onofrio, A. Gandolfi, Resistance to antitumor chemotherapy due to bounded-noise-induced transitions. Phys. Rev. E 82, 061,901 (2010)

    Google Scholar 

  22. C. DuBois, J. Farnham, E. Aaron, A. Radunskaya, A multiple time-scale computational model of a tumor and its micro environment. MBE 10(1), 121–150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.E. Dudley, J.R. Wunderlich, P.F. Robbins, J.C. Yang, P. Hwu, D.J. Schwartzentruber, S.L. Topalian, R. Sherry, N.P. Restifo, A.M. Hubicki, M.R. Robinson, M. Raffeld, P. Duray, C.A. Seipp, L. Rogers-Freezer, K.E. Morton, S.A. Mavroukakis, D.E. White, S.A. Rosenberg, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002)

    Article  Google Scholar 

  24. O.K. Dzivenu, J. O’Donnell-Tormey, Cancer and the immune system: the vital connection. Online (2003). URL http://www.cancerresearch.org/cancer-immunotherapy/resources/cancer-and-the-immune-system

  25. P. Ehrlich, Über den jetzigen stand der karzinomforschung. Ned. Tijdschr. Geneeskd. 5, 273–290 (1909)

    Google Scholar 

  26. A. Farrell, Milestone 3, (1909) Immune surveillance, hide and seek. Nat. Med. (2006)

    Google Scholar 

  27. S.C. Ferreira, M.L. Martins, M.J. Vilela, Reaction-diffusion model for the growth of avascular tumor. Phys. Rev. E 65, 021,907 (2002)

    Article  MathSciNet  Google Scholar 

  28. J. Folkman, M. Hochberg, Self-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753 (1973)

    Article  Google Scholar 

  29. C. Gravalos, J. Cassinello, P. Garcia-Alfonso, A. Jimeno, Integration of panitumumab into the treatment of colorectal cancer. Crit. Rev. Oncol. Hematol. 74(1), 16–26 (2010)

    Article  Google Scholar 

  30. H. Greenspan, Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51, 317–338 (1972)

    MATH  Google Scholar 

  31. A.M. Grothey, Defining the role of panitumumab in colorectal cancer. Community Oncology 3, 10–16 (2006)

    Google Scholar 

  32. B.J. Kennedy, Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy. Blood 35(6), 751–760 (1970)

    Google Scholar 

  33. D.D. Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor - immune interaction. J. Math. Biol. 37(3), 235–252 (1998)

    Article  MATH  Google Scholar 

  34. Krikorian, J., Portlock, C., Cooney, D., Rosenberg, S.: Spontaneous regression of non-hodgkin’s lymphoma: A report of nine cases. Cancer 46, 2093–2099 (1980)

    Article  Google Scholar 

  35. N.N. Kronik, Y. Kogan, V. Vainstein, Z. Agur, Improving alloreactive ctl immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57(3), 425–439 (2008)

    Article  Google Scholar 

  36. V. Kuznetsov, in A Survey of Models for Tumor-Immune System Dynamics, eds. by J. Adam, N. Bellomo Basic Models of Tumor-Immune System Interactions- Identification, Analysis and Predictions (Birkhauser, Basel 1997)

    Google Scholar 

  37. H.J. Lenz, Cetuximab in the management of colorectal cancer. Biologics 2, 77–91 (2007)

    Google Scholar 

  38. A. Lin, A model of tumor and lymphocyte interactions. Discrete Contin. Dyn. Syst. Ser. B 4(1), 241–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mallett, D., de Pillis, L.: A cellular automata model of tumor-immunesystem interactions. J. Theor. Biol. 239, 334–350 (2006)

    Article  Google Scholar 

  40. E. Martinelli, R. De Palma, M. Orditura, F. De Vita, F. Ciardiello, Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol. 158, 1–9 (2009)

    Article  Google Scholar 

  41. A. Matzavinos, M.A. Chaplain, V.A. Kuznetsov, Mathematical modelling of the spatio-temporal response of cytotoxic t-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)

    Article  MATH  Google Scholar 

  42. L. Norton, R. Simon, H. Brereton, A. Bogden, Predicting the course of gompertzian growth. Nature 264, 542–545 (1976)

    Article  Google Scholar 

  43. W. Paul, Fundamental Immunology, 5 edn. Lippincott, Williams and Wilkins Publishers, Sydney (2003)

    Google Scholar 

  44. A.S. Perelson, G. Weisbuch, Immunology for physicists. Rev. Mod. Phys. 69, 1219–1268 (1997)

    Article  Google Scholar 

  45. S. Pilon-Thomas, M., Verhaegen, J. Mulé, Dendritic cell-based therapeutics for breast cancer. Heart Disease 20, 65–71 (2004)

    Google Scholar 

  46. O. Preynat-Seauve, E. Contassot, P. Schuler, L.E. French, B. Huard, Melanoma-infiltrating dendritic cells induce protective antitumor responses mediated by t cells. Melanoma Res. 17, 169–176 (2007)

    Article  Google Scholar 

  47. A. Radunskaya, S. Hook, in: New Challenges for Cancer Systems Biomedicine eds. by A. d’Onofrio, P. Cerrai, A. Gandolfi, Modeling the kinetics of the Immune Response (Springer, Newyork, 2012), pp. 267–282.

    Google Scholar 

  48. A. Radunskaya, L. de Pillis, A. Gallegos, A model of dendritic cell therapy for melanoma. Front. Oncology 3(56), 223–228 (2013)

    Google Scholar 

  49. H. Riedel, in The Cancer Handbook Wiley, ed. by M. Alison Models for tumour growth and differentiations (New Jersey Institute of Technology, New Jersey 2004)

    Google Scholar 

  50. S.A. Rosenberg, J. Yang, S.L.E.A. Topalian, Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907–913 (1994)

    Article  Google Scholar 

  51. J. Schmollinger, R. Vonderhelde, K. Hoar, R. Vonderheide, K. Hoar, Maecker, B., J., F.S., H. Schultze, R. Soiffer, K. Jung, M. Kuroda, N. Letvin, E. Greenfield, M. Mihm, J. Kutok, G.Dranoff, Melanoma inhibitor of apoptosis protein (ml-iap) is a target for immune-mediated tumor destruction. Proc. Natl. Acad. Sci. USA 100(6), 3398–3403 (2003)

    Google Scholar 

  52. J. Sherratt, M. Nowak, Oncogenes, anti-oncogenes and the immune response to cancer. Proc. R. Soc. Lond. B 248, 261–271 (1992)

    Article  Google Scholar 

  53. S. Siena, A. Sartore-Bianchi, F. Di Nicolantonio, J. Balfour, A. Bardelli, Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst. 101, 1–17 (2009)

    Article  Google Scholar 

  54. R. Soiffer, T. Lynch, M. Mihm, K. Jung, C. Rhuda, J. Schmollinger, F. Hodi, L. Liebster, P. Lam, S. Mentzer, S. Singer, K. Tanabe, A. Cosimi, R. Duda, A. Sober, A. Bhan, J. Daley, D. Neuberg, G. Parry, J. Rokovich, L. Richards, J. Drayer, A. Berns, S. Clift, L. Cohen, R. Mulligan, G. Dranoff, Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 95, 13,141–13,146 (1998)

    Article  Google Scholar 

  55. J. Speer, V. Petrosky, M. Retsky, R. Wardwell, A stochastic numerical model of breast cancer growth that simulates clinical data. Cancer Res. 44, 41244,130 (1984)

    Google Scholar 

  56. C.O. Starnes, Coley’s toxins in perspective. Nature 357, 11–12 (1992)

    Article  Google Scholar 

  57. O. von Stryk, User’s guide for DIRCOL: A direct collocation method for the numerical solution of optimal control problems. Lehrstuhl M2 Numerische Mathematik, Technische Universitaet Muenchen (1999)

    Google Scholar 

  58. R.M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988)

    Article  Google Scholar 

  59. R. Thomlinson, Measurement and management of carcinoma of the breast. Clin. Radiol. 33(5), 481–493 (1982)

    Article  Google Scholar 

  60. L. Zhang, J. Conejo-Garcia, D. Katsaros, P. Gimotty, M. Massobrio, G. Regnani, A. Makrigiannakis, H. Gray, K. Schlienger, M. Liebman, S. Rubin, G. Coukos, Intratumoral t cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348(3), 203–213 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Earlier, more detailed versions of much of the material in this chapter was published in [13–16, 39, 47, 48]. A. Radunskaya was partially supported by NSF grant DMS-1016136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami Radunskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Pillis, L., Radunskaya, A. (2014). Modeling Immune-Mediated Tumor Growth and Treatment. In: d'Onofrio, A., Gandolfi, A. (eds) Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0458-7_7

Download citation

Publish with us

Policies and ethics