Skip to main content

The Power of the Tumor Microenvironment: A Systemic Approach for a Systemic Disease

  • Chapter
  • First Online:
Mathematical Oncology 2013

Abstract

Cancer is increasingly recognized as not solely a disease of the genes and chromosomes but as a systemic disease that affects numerous components of the host including blood vessel formation, immune cell function, and nutrient recycling. This review summarizes a variety of time-dependent mathematical models that focus on the consequences of tumor growth within an evolving microenvironment, represented by a dynamic carrying capacity. Transcending the specifics of each model, their overview reveals that the key to tumor control really lies in controlling the support furnished the tumor by its microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.T. DeVita Jr., T.S. Lawrence, S.A. Rosenberg (eds.), DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology, 9th edn. (Lippincott, Williams & Wilkins, Philadelphia, 2011)

    Google Scholar 

  2. I. Kareva, What can ecology teach us about cancer? Transl. Oncol. 4(5), 266–270 (2011)

    Article  Google Scholar 

  3. K.E. deVisser, A. Eichten, L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6(1), 24–37 (2006)

    Google Scholar 

  4. J. Folkman, Tumor angiogenesis: therapeutic implications. New Engl. J. Med. 285(21), 1182–1186 (1971)

    Article  Google Scholar 

  5. M.S. O’Reilly, T. Boehm, Y. Shing, N. Fukai, G. Vasios, W.S. Lane et al., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997)

    Article  Google Scholar 

  6. P. Hahnfeldt, D. Panigraphy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59(19), 4770–4775 (1999)

    Google Scholar 

  7. S.I. Grivennikov, F.R. Greten, M. Karin, Immunity, inflammation, and cancer. Cell 140(6), 883–899 (2010)

    Article  Google Scholar 

  8. M.J. Thun, S.J. Henley, C. Patrono, Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94(4), 252–266 (2002)

    Article  Google Scholar 

  9. M. Boersma, J.J. Elser, Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87(5), 1325–1330 (2006)

    Article  Google Scholar 

  10. J. Elser, Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am. Nat. 168(Suppl 6), S25–S35 (2006)

    Article  Google Scholar 

  11. J.J. Elser, J.D. Nagy, Y. Kuang, Biological stoichiometry: an ecological perspective on tumor dynamics. Bioscience 53(11), 1112–1120 (2003)

    Article  Google Scholar 

  12. A.K. Laird, Dynamics of tumor growth. Br. J. Cancer 18(3), 490–502 (1964)

    Article  Google Scholar 

  13. C. DeLisi, A. Rescigno, Immune surveillance and neoplasia–1 a minimal mathematical model. Bull. Math. Biol. 39(2), 201–221 (1977)

    MathSciNet  MATH  Google Scholar 

  14. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

    Article  MATH  Google Scholar 

  15. D. Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998)

    Article  MATH  Google Scholar 

  16. L.G. de Pillis, A.E. Radunskaya, C.L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005)

    Google Scholar 

  17. A. d’Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208(3–4), 220–235 (2005)

    Google Scholar 

  18. A. Cappuccio, M. Elishmereni, Z. Agur, Cancer immunotherapy by interleukin-21: potential treatment strategies evaluated in a mathematical model. Cancer Res. 66(14), 7293–7300 (2006)

    Article  Google Scholar 

  19. R. Eftimie, J.L. Bramson, D.J. Earn, Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73(1), 2–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. K.P. Wilkie, A review of mathematical models of cancer-immune interactions in the context of tumor dormancy. Adv. Exp. Med. Biol. 734, 201–234 (2013). doi:10.1007/978-1-4614-1445-2_10

    Article  Google Scholar 

  21. R. Lefever, W. Horsthemke, Bistability in fluctuating environments. implications in tumor immunology. Bull. Math. Biol. 41, 469–490 (1979)

    Google Scholar 

  22. A. d’Onofrio, Bounded-noise-induced transitions in a tumor-immune system interplay. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 021923, 1–7 (2010)

    Google Scholar 

  23. A. d’Onofrio, A. Ciancio, Simple biophysical model of tumor evasion from immune system control. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(3), 031910 (2011). doi:10.1103/PhysRevE.84.031910

    Google Scholar 

  24. K.P. Wilkie, P. Hahnfeldt, Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion. Interface Focus 3, 20130010 (2013)

    Article  Google Scholar 

  25. A. Matzavinos, M.A.J. Chaplain, V.A. Kuznetsov, Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)

    Article  MATH  Google Scholar 

  26. T. Roose, S.J. Chapman, R.K. Maini Mathematical models of avascular tumor growth. SIAM Rev. 49(2), 179–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Enderling, L. Hlatky, P. Hahnfeldt, Immunoediting: evidence of the multifaceted role of the immune system in self-metastatic tumor growth. Theor. Biol. Med. Model. 9, 31 (2012). doi:10.1186/1742-4682-9-31

    Article  Google Scholar 

  28. T. Takayanagi, H. Kawamura, A. Ohuchi, Cellular automaton model of a tumor tissue consisting of tumor cells, cytotoxic T lymphocytes (CTLs), and cytokine produced by CTLs. IPSJ Trans. Math. Model. Appl. 47(1),61–67 (2006). doi:10.2197/ipsjdc.2.138

    Google Scholar 

  29. A. d’Onofrio, A. Gandolfi, Tumor eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Bath Biosci. 191(2), 159–184 (2004)

    Google Scholar 

  30. A. d’Onofrio, A. Gandolfi, A family of models of angiogenesis and antiangiogenesis anti-cancer therapy. Math. Med. Biol. 26(1), 63–95 (2009)

    Google Scholar 

  31. U. Ledzewicz, H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46(3), 1052–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. U. Ledzewicz, H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. Theor. Biol. 252(2), 295–312 (2008)

    Article  Google Scholar 

  33. U. Ledzewicz, A. d’Onofrio, H. Schättler, Tumor development under combination treatments with anti-angiogenic therapies, in Mathematical Methods and Models in Biomedicine, ed. by U. Ledzewicz, H. Schättler, A. Friedman, E. Kashdan. Lecture Notes on Mathematical Modeling in the Life Sciences (Springer, Heidelberg, 2012), pp. 301–327

    Google Scholar 

  34. S. Benzekry, G. Chapuisat, J. Ciccolini, A. Erlinger, F. Hubert, A new mathematical model for optimizing the combination between antiangiogenic and cytotoxic drugs in oncology. C. R. Math. Acad. Sci. Paris 350(1–2), 23–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. T.L. Jackson, Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support. J. Math. Biol. 44(3), 201–226 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Benzekr, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis. J. Evol. Equat. 11(1), 187–213 (2010)

    Google Scholar 

  37. K.P. Wilkie, P. Hahfeldt, Tumor-immune dynamics regulated in the microenvironment inform the transient nature of immune-induced tumor dormancy. Cancer Res. 73(12), 3534–3544 (2013)

    Article  Google Scholar 

  38. G.N. Naumov, E. Bender, D. Zurakowski, S.Y. Kang, D. Sampson, E. Flynn et al., A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl. Cancer Inst. 98(5), 316–325 (2006)

    Article  Google Scholar 

  39. M. Hu, J. Yao, D.K. Carroll, S. Weremowicz, H. Chen, D. Carrasco et al., Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13(5), 394–406 (2008)

    Article  Google Scholar 

  40. H. Withers, Treatment-induced accelerated human tumor growth. Semin. Radiat. Oncol. 3(2), 135–143 (1993)

    Article  Google Scholar 

  41. S.Y. El Sharouni, H.B. Kal, J.J. Battermann, Accelerated regrowth of non-small-cell lung tumours after induction chemotherapy. Br. J. Cancer 89(12), 2184–2189 (2003)

    Article  Google Scholar 

  42. S. Kraus, N. Arber, Inflammation and colorectal cancer. Curr. Opin. Pharmacol. 9(4), 405–410 (2009)

    Article  Google Scholar 

  43. A. Mantovani, P. Romero, A.K. Palucka, F.M. Marincola, Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371(9614), 771–783 (2008)

    Article  Google Scholar 

  44. F.R. Balkwill, L.M. Coussens, Cancer: an inflammatory link. Nature 431(7007), 405–406 (2004)

    Article  Google Scholar 

  45. J. Condeelis, J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2), 263–266 (2006)

    Article  Google Scholar 

  46. D. Nelson, R. Ganss, Tumor growth or regression: powered by inflammation. J. Leukocyte Biol. 80(4), 685–690 (2006)

    Article  Google Scholar 

  47. K.P. Wilkie, P. Hahnfeldt, Modeling the dichotomy of the immune response to cancer: cytotoxic effects and tumor-promoting inflammation (2013). ArXiv:1305.3634

    Google Scholar 

  48. J.D. Wolchok, A. Hoos, S. O’Day, J.S. Weber, O. Hamid, C. Lebbé et al., Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15(23), 7412–7420 (2009)

    Article  Google Scholar 

  49. H. Jin, C. Xu, H. Lim, S. Park, J. Shin, Y. Chung et al., High dietary inorganic phosphate increases lung tumorigenesis and alters AKT signaling. Am. J. Respir. Crit. Care Med. 179(1), 59–68 (2009)

    Article  Google Scholar 

  50. J.J. Elser, M.M. Kyle, M.S. Smith, J.D. Nagy, Biological stoichiometry in human cancer. PLoS ONE 2(10), e1028 (2007). doi:10.1371/journal.pone.0001028

    Article  Google Scholar 

  51. Y. Kuang, J.D. Nagy, J.J. Elser, Biological stoichiometry of tumor dynamics: mathematical models and analysis. Discrete Contin. Dyn. B 4(1), 221–240 (2004)

    MathSciNet  MATH  Google Scholar 

  52. I. Kareva, Biological stoichiometry in tumor micro-environments. PLoS ONE 8(1), e51844 (2013)

    Google Scholar 

  53. S.M. Gapstur, M.J. Thun, Progress in the war on cancer. J. Am. Med. Assoc. 303(11), 1084–1085 (2010)

    Article  Google Scholar 

  54. J.M.L. Ebos, R.S. Kerbel, Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8(4), 210–221 (2011)

    Article  Google Scholar 

  55. L. Bello, G. Carrabba, C. Giussani, V. Lucini, F. Ceruutti, F. Scaglione et al., Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res. 61(20), 7501–7506 (2001)

    Google Scholar 

  56. P. Hahnfeldt, J. Folkman, L.R. Hlatky, Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol. 220, 545–554 (2003)

    Article  Google Scholar 

  57. J.C. Doloff, D.J. Waxman, VEGF receptor inhibitors block the ability of metronomically dosed cyclophosphamide to activate innate immunity-induced tumor regression. Cancer Res. 72(5), 1103–1115 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Hahnfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kareva, I., Wilkie, K.P., Hahnfeldt, P. (2014). The Power of the Tumor Microenvironment: A Systemic Approach for a Systemic Disease. In: d'Onofrio, A., Gandolfi, A. (eds) Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0458-7_6

Download citation

Publish with us

Policies and ethics