Skip to main content

Avascular Tumor Growth Modelling: Physical Insights to Skin Cancer

  • Chapter
  • First Online:
Mathematical Oncology 2013

Abstract

In this chapter I present the state-of-the-art theoretical models for avascular tumor growth which are well established nowadays. I focus on models able to treat morphologic instabilities and phase segregation, two typical features of skin cancer for example melanoma. Contrary to experiments made in vitro on growing colonies, I show that the geometry of melanoma confined in the epidermis in the early stages of tumor growth suppresses the necrotic core and is responsible of inhomogeneities due to aggregation of cancerous cells. A relatively simple model consisting in the adaptation of the two-phase mixture model is enough to explain the morphologies of the tumor not only qualitatively but also quantitatively. Despite the complexity of the nonlinear partial differential equations that results from this model, I also present analytical treatments based on the techniques of nonlinear physics and W.K.B approximation to explain the observed structures in dermatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ncbi.nlm.nih.gov/ Pubmed. The number of items in oncology has been determined using the keywords “cancer” and “tumor.” The number of articles referring to a mathematical modelling was determined by adding the keywords “modelling” and “mathematical model.” Search on 29th June 2012.

  2. 2.

    In the case of a diffusion-limited growth one often chooses \(\varGamma = an-\delta\) [97]. This non-uniform growth including a uniform apoptosis term δ in the tumor was introduced by McElwain and Morris in 1978 [101] according to experiments of Sutherland and Durand [134] showing that a dormant state was reached without the appearance of necrotic cell loss in the tumor center.

  3. 3.

    For avascular tumors, one often chooses \(S = -\delta _{n}n\), that is, an oxygen consumption proportional to the oxygen concentration as introduced by Deakin [49], according to the experiments of Sutherland and Durand [134] that show an inconsistency with the model of Greenspan. Such a relationship is well justified when the oxygen concentration is low.

  4. 4.

    By definition \(F_{ij} = \partial x_{i}/\partial X_{j}\) with \(\boldsymbol{X}\) identifying points of the solid in the initial state Ω 0 and \(\boldsymbol{x}\) in the current state Ω t [51, 53].

References

  1. J. Adam, A mathematical model of tumor growth. ii. Effects of geometry and spatial nonuniformity on stability. Math. Biosci. 86, 183–211 (1987)

    Google Scholar 

  2. M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100(7), 3983–3988 (2003)

    Google Scholar 

  3. D. Alemani, F. Pappalardo, S. Pennisi, M. Motta, V. Brusic, Combining cellular automata and lattice boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition. J. Immunol. Methods 376(1–2), 55–68 (2012)

    Google Scholar 

  4. D. Ambrosi, F. Mollica, On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316 (2002)

    MathSciNet  MATH  Google Scholar 

  5. D. Ambrosi, F. Mollica, The role of stress in the growth of a multicell spheroid. J. Math. Biol. 48(5), 477–499 (2004)

    MathSciNet  MATH  Google Scholar 

  6. D. Ambrosi, P. Preziosi, On the closure of mass balance models for tumour growth. Math. Model Methods Appl. Sci. 12, 737–754 (2002)

    MathSciNet  MATH  Google Scholar 

  7. D. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model Mechanobiol. 8(5), 397–413 (2009)

    Google Scholar 

  8. A.R. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2), 163–186 (2005)

    MATH  Google Scholar 

  9. A.R. Anderson, A.M. Weaver, P.T. Cummings, V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5), 905–915 (2006)

    Google Scholar 

  10. R.P. Araujo, D.L. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    MathSciNet  Google Scholar 

  11. R.P. Araujo, D.L.S. McElwain, A mixture theory for the genesis of residual stresses in growing tissues. SIAM J. Appl. Math. 65, 1261–1284 (2005)

    MathSciNet  MATH  Google Scholar 

  12. G. Argenziano, H. Kittler, G. Ferrara, P. Rubegni, J. Malvehy, S. Puig, L. Cowell, I. Stanganelli, V. De Giorgi, L. Thomas, P. Bahadoran, S.W. Menzies, D. Piccolo, A.A. Marghoob, I. Zalaudek, Slow-growing melanoma: a dermoscopy follow-up study. Br. J. Dermatol. 162(2), 267–273 (2010)

    Google Scholar 

  13. T. Balois, M. Ben Amar, Morphology of melanocytic lesions in situ, Nat. Sci. Rep. 4, 3622 (2014). doi:10.1038/srep03622

    Google Scholar 

  14. T. Balois, C. Chatelain, M. Ben Amar, Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis, Journ. Roy. Soc. Interface, 11, 20140339 (2014)

    Google Scholar 

  15. M.R. Baer, J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12, 861–889 (1986)

    MATH  Google Scholar 

  16. M.B. Baraldi, A.A. Alemi, J.P. Sethna, S. Caracciolo, C.A.M. La Porta, S. Zapperi, Growth and form of melanoma cell colonies. J. Stat. Mech. 02, P02032 (2013)

    Google Scholar 

  17. B. Basaliy, A. Friedman, Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: an application to a model of tumor growth. Indiana Univ. Math. J. 52, 1265–1303 (2003)

    MathSciNet  Google Scholar 

  18. M. Basan, T. Risler, J.F. Joanny, X. Sastre-Garau, J. Prost, Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 3(4), 265–272 (2003)

    Google Scholar 

  19. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967), pp. 131–173

    MATH  Google Scholar 

  20. E.L. Bearer, J.S. Lowengrub, H.B. Frieboes, Y.-L. Chuang, F. Jin, S.M. Wise, M. Ferrari, D.B. Agus, V. Cristini, Multiparameter computational modelling of tumor invasion. Cancer Res. 69(10), 4493–4501 (2009)

    Google Scholar 

  21. B. Bedogni, S.M. Welford, D.S. Cassarino, B.J. Nickoloff, A.J. Giaccia, M.B. Powell, The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8, 443–454 (2005)

    Google Scholar 

  22. M. Ben Amar, Chemotaxis migration and morphogenesis of living colonies. Eur. Phys. J. E 36, 64–76 (2013). doi:10.1140/epje/i2013-13064-5

    Google Scholar 

  23. M. Ben Amar, A. Goriely, Growth and instability in elastic tissue. J. Mech. Phys. Solids 53(20), 2284–2319 (2005)

    MathSciNet  MATH  Google Scholar 

  24. M. Ben Amar, F. Jia, Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl. Acad. Sci. USA 110(26), 10525–10530 (2013)

    Google Scholar 

  25. M. Ben Amar, C. Chatelain, P. Ciarletta, Contour instabilities in early tumor growth models. Phys. Rev. Lett. 106, 148101–148104 (2011)

    Google Scholar 

  26. A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Modelling the evolution of a tumoral multicellular spheroid as a two-fluid Bingham-like system. Math. Mod. Meth. Appl. Sci. 23, 2561–2602 (2013)

    MathSciNet  MATH  Google Scholar 

  27. T. Borovski, L. Vermeulen, M.R. Sprick, J.P. Medema, One renegade cancer stem cell? Cell Cycle 8(6), 803–808 (2009)

    Google Scholar 

  28. A. Breslow, Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann. Surg. 172(5), 902–908 (1970)

    Google Scholar 

  29. A.C. Burton, Rate of growth of solid tumours as a problem of diffusion. Growth 30(2), 157–176 (1966)

    Google Scholar 

  30. H.M. Byrne, M.A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130(2), 151–181 (1995)

    MATH  Google Scholar 

  31. H.M. Byrne, M.A. Chaplain, Free boundary value problems associated with the growth and development of multicellular spheroids. Eur. J. Appl. Math. 8, 639–658 (1997)

    MathSciNet  MATH  Google Scholar 

  32. H.M. Byrne, D. Drasdo Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58(4–5), 657–687 (2009)

    MathSciNet  Google Scholar 

  33. H.M. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20(4), 341–366 (2003)

    MathSciNet  MATH  Google Scholar 

  34. H.M. Byrne, J.R. King, D.L.S. McElwain, L. Preziosi, A two-phase model of solid tumour growth. Appl. Math. Lett. 16, 567–573 (2003)

    MathSciNet  MATH  Google Scholar 

  35. H.M. Byrne, T. Alarcon, M.R. Owen, S.D. Webb, P.K. Maini, Modelling aspects of cancer dynamics: a review. Philos. Transact. A Math. Phys. Eng. Sci. 364(1843), 1563–1578 (2006)

    MathSciNet  Google Scholar 

  36. G. Caravagna, R. Barbuti, A. d’Onofrio, Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinform.12, S8 (2012)

    Google Scholar 

  37. G. Caravagna, G. Mauri, A. d’Onofrio, The interplay between intrinsic and extrinsic noise in biomolecular networks. PLoS ONE 8(2), e51174 (2013)

    Google Scholar 

  38. L. Cardamone, A. Valentín, J.F. Eberth, J.D. Humphrey, Origin of axial prestretch and residual stress in arteries. Biomech. Model Mechanobiol. 8(6), 431–446 (2009)

    Google Scholar 

  39. L.I. Cardenas-Navia, D. Yu, R.D. Braun, D.M. Brizel, T.W. Secomb, M.W. Dewhirst, Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing. Cancer Res. 64(17), 6 (2004)

    Google Scholar 

  40. M.A. Chaplain, B.D. Sleeman, Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory. J. Math. Biol. 31(5), 431–473 (1993)

    MathSciNet  MATH  Google Scholar 

  41. C. Chatelain, T. Balois, P. Ciarletta, M. Ben Amar, Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture. New J. Phys. 13, 115013 (2011)

    Google Scholar 

  42. C. Chatelain, P. Ciarletta, M. Ben Amar, Morphological changes in early melanoma development: influence of nutrients, growth inhibitors and cell-adhesion mechanisms. J. Theor. Biol. 290, 46–59 (2011)

    MathSciNet  Google Scholar 

  43. L. Chin, L.A. Garraway, D.E. Fisher, Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 20(16), 2149–2182 (2006)

    Google Scholar 

  44. P. Ciarletta, L. Foret, M. Ben Amar, The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis. J. R. Soc. Interface 8(56), 345–368 (2011)

    Google Scholar 

  45. A.A. Creasey, H.S. Smith, A.J. Hackett, K. Fukuyama, W.L. Epstein, S.H. Madin, Biological properties of human melanoma cells in culture. In Vitro 15(5), 342–350 (1979)

    Google Scholar 

  46. V. Cristini, J. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth. J. Math. Biol. 46(3), 191–224 (2003)

    MathSciNet  MATH  Google Scholar 

  47. V. Cristini, X. Li, J.S. Lowengrub, S.M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58(4–5), 723–763 (2009)

    MathSciNet  Google Scholar 

  48. A. d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E 76, 031920–031927 (2007)

    Google Scholar 

  49. A.S. Deakin, Model for the growth of a solid in vitro tumor. Growth 39(1), 159–165 (1975)

    MathSciNet  Google Scholar 

  50. R. Decker, R.L. Brown, A turbulent mixture theory for the atmospheric mixture of snow and air. Ann. Glaciol. 4, 37–41 (1983)

    Google Scholar 

  51. J. Dervaux, Morphogenèse et Elasticité en géométrie mince. Ph.D. thesis, Université Paris Diderot, 2010

    Google Scholar 

  52. J. Dervaux, M. Ben Amar, Buckling condensation in constrained growth. J. Mech. Phys. Solids 59, 538–560 (2011)

    MathSciNet  MATH  Google Scholar 

  53. J. Dervaux, M. Ben Amar, Mechanical instabilities of gels. Ann. Rev. Condensed Matter Phys. 3, 311–332 (2012)

    Google Scholar 

  54. L.A. Dethlefsen, J.M. Prewitt, M.L. Mendelsohn, Analysis of tumor growth curves. J. Natl. Cancer Inst. 40(2), 389–405 (1968)

    Google Scholar 

  55. M. Doi, A. Onuki, Dynamic coupling between stress and composition in polymer solutions and blends. J. Phys. II 2, 1631–1656 (1992)

    Google Scholar 

  56. D. Drasdo, On selected individual-based approaches to the dynamics of multicellular systems, in Multiscale Modelling, ed. by W. Alt, M. Chaplain, M. Griebel, J. Lenz (Birkhäuser, Basel, 2003), pp. 169–205

    Google Scholar 

  57. D. Drasdo, S. Hoehme, A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2(3), 133–147 (2005)

    Google Scholar 

  58. K.A. Ellem, G.F. Kay, The nature of conditioning nutrients for human malignant melanoma cultures. J. Cell Sci. 62, 249–266 (1983)

    Google Scholar 

  59. J. Fink, N. Carpi, T. Betz, A. Bétard, M. Chebah, A. Azioune, M. Bornens, C. Sykes, L. Fetler, D. Cuvelier, M. Piel, External forces control mitotic spindle positioning. Nat. Cell Biol. 13(7), 771–778 (2011)

    Google Scholar 

  60. J. Folkman, M. Hochberg, Self-regulation of growth in three dimensions. J. Exp. Med. 138(4), 745–753 (1973)

    Google Scholar 

  61. R.A. Foty, M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278(1), 255–263 (2005)

    Google Scholar 

  62. A. Friedman, B. Hu, Bifurcation from stability to instability for a free boundary problem modelling tumor growth by Stokes equation. J. Math. Anal. Appl. 327, 643–664 (2007)

    MathSciNet  MATH  Google Scholar 

  63. A. Friedman, F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Am. Math. Soc. 353, 1587–1634 (2001)

    MathSciNet  MATH  Google Scholar 

  64. R.A. Gatenby, P.K. Maini, Mathematical oncology: cancer summed up. Nature 421(6921), 321–321 (2003)

    Google Scholar 

  65. E. Gentilhomme, Y. Neveux, Physiologie de la peau et explorations fonctionnelles cutanées, ed. by P. Agache (Editions Médicales Internationales, Cachan, 2000), pp. 165–172

    Google Scholar 

  66. J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2128–2154 (1993)

    Google Scholar 

  67. S.C. Glotzer, E.A. Di Marzio, M. Muthukumar, Reaction-controlled morphology of phase-separating mixtures. Phys. Rev. Lett. 74(11), 2034–2037 (1995)

    Google Scholar 

  68. A. Goriely, M. Ben Amar, Differential growth and instability of spherical shells. Phys. Rev. Lett. 94, 198103–198106 (2005)

    Google Scholar 

  69. L. Graziano, L. Preziosi, Modelling of biological materials, in Mechanics in Tumor Growth (Birkhauser, Basel, 2007), pp. 267–328

    Google Scholar 

  70. H.P. Greenspan, Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. LI, 317–340 (1972)

    Google Scholar 

  71. H.P. Greenspan, On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    MathSciNet  Google Scholar 

  72. G. Griffon-Etienne, Y. Boucher, C. Brekken, H.D. Suit, R.K. Jain, Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59(15), 3776–3782 (1999)

    Google Scholar 

  73. B.M. Gumbiner, Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3), 345–357 (1996)

    Google Scholar 

  74. N.K. Haass, K.S.M. Smalley, M. Herlyn, The role of altered cell–cell communication in melanoma progression. J. Mol. Histol. 35(3), 309–318 (2004)

    Google Scholar 

  75. J.M. Halbleib, W.J. Nelson, Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20(23), 3199–3214 (2006)

    Google Scholar 

  76. F.G. Haluska, H. Tsao, H. Wu, F.S. Haluska, V. Lazar, A. Goel, Genetic alterations in signaling pathways in melanoma. Clin. Cancer Res. 12, 2301–2307 (2006)

    Google Scholar 

  77. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Google Scholar 

  78. G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15(8), 778–783 (1997)

    Google Scholar 

  79. S. Hoehme, D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics 26(20), 2641–2642 (2010)

    Google Scholar 

  80. M.E. Hystad, E.K. Rofstad, Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids. Int. J. Cancer 57(4), 532–537 (1994)

    Google Scholar 

  81. R.K. Jain, Transport of molecules in the tumor interstitium: a review. Cancer Res. 47(12), 3039–3051 (1987)

    Google Scholar 

  82. F. Jia, M. Ben Amar, Theoretical analysis of growth or swelling wrinkles on constrained soft slabs. Soft Matter 9, 8216–8226 (2013)

    Google Scholar 

  83. M.E. Johnson, D. Blankschtein, R. Langer, Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86(10), 1162–1172 (1997)

    Google Scholar 

  84. F. Kallinowski, K.H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res. 49(14), 3759–3764 (1989)

    Google Scholar 

  85. J. Kanitis, Biologie de la peau humaine, ed. by D. Schmitt (Les éditions INSERM, Paris, 1997), pp. 1–20

    Google Scholar 

  86. P.M. van Kemenade, J.M. Huyghe, L.F.A. Douven, Triphasic fe modelling of skin water barrier. Transport Porous Media 50, 93–109 (2003)

    Google Scholar 

  87. A.M. Klein, V. Nikolaidou-Neokosmidou, D.P. Doupè, P.H. Jones, B.D. Simons, Patterning as a signature of human epidermal stem cell regulation. J. R. Soc. Interface 8(65), 1815–1824 (2011)

    Google Scholar 

  88. C.A. Kristensen, M. Nozue, Y. Boucher, R.K. Jain, Reduction of interstitial fluid pressure after tnf-alpha treatment of three human melanoma xenografts. Br. J. Cancer 74(4), 533–536 (1996)

    Google Scholar 

  89. S. Kuphal, A. Bosserhoff, Recent progress in understanding the pathology of malignant melanoma. J. Pathol. 219(4), 400–409 (2009)

    Google Scholar 

  90. Y. Kuwahara, Y. Shima, D. Shirayama, M. Kawai, K. Hagihara, T. Hirano, J. Arimitsu, A. Ogata, T. Tanaka, I. Kawase, Quantification of hardness, elasticity and viscosity of the skin of patients with systemic sclerosis using a novel sensing device (vesmeter): a proposal for a new outcome measurement procedure. Rheumatology (Oxford) 47(7), 1018–1024 (2008)

    Google Scholar 

  91. L.D. Landau, E.M. Lifshitz, Statistical Physics, 1st edn. (Pergamon Press, Oxford, 1980)

    Google Scholar 

  92. K.A. Landman, C.P. Please, Tumour dynamics and necrosis: surface tension and stability. IMA J. Math. Appl. Med. Biol. 18(2), 131–158 (2001)

    MATH  Google Scholar 

  93. C.A.M. La Porta, S. Zapperi, J.P. Sethna, Senescent cells in growing tumors: population dynamics and cancer stem cells. PLoS Comput. Biol. 8, e1002316 (2012)

    Google Scholar 

  94. L. Leibler, Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980)

    Google Scholar 

  95. X. Li, V. Cristini, Q. Nie, J. Lowengrub, Nonlinear three-dimensional simulation of solid tumor growth. Discrete Dyn. Contin. Dyn. Syst. B 7, 581–604 (2007)

    MathSciNet  MATH  Google Scholar 

  96. W. Liu, J.P. Dowling, W.K. Murray, G.A. McArthur, J.F. Thompson, R. Wolfe, J.W. Kelly, Rate of growth in melanomas: characteristics and associations of rapidly growing melanomas. Arch. Dermatol. 142(12), 1551–1558 (2006)

    Google Scholar 

  97. J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R9 (2010)

    MathSciNet  MATH  Google Scholar 

  98. B.D. MacArthur, C.P. Please, Residual stress generation and necrosis formation in multi-cell tumour spheroids. J. Math. Biol. 49(6), 537–552 (2004)

    MathSciNet  MATH  Google Scholar 

  99. C. Mateus, C. Robert, Major therapeutic advances in the treatment of metastatic melanoma. Bull. Cancer 99(6), 619–625 (2012)

    Google Scholar 

  100. W.V. Mayneord, On the law of growth of Jensen’s rat sarcoma. Am. J. Cancer 16, 841–846 (1932)

    Google Scholar 

  101. D.L.S. McElwain, L.E. Morris, Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci. 39, 147–157 (1978)

    Google Scholar 

  102. S.J. Miller, Biology of basal cell carcinoma (Part II). J. Am. Acad. Dermatol. 24, 161–175 (1991)

    Google Scholar 

  103. T. Mueller, A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

    MATH  Google Scholar 

  104. W. Mueller-Klieser, Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol. 113(2), 101–122 (1987)

    Google Scholar 

  105. A. Neagu, K. Jakab, R. Jamison, G. Forgacs, Role of physical mechanisms in biological self-organization. Phys. Rev. Lett. 95(17), 178104–178107 (2005)

    Google Scholar 

  106. A. Nose, A. Nagafuchi, M. Takeichi, Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54(7), 993–1001 (1988)

    Google Scholar 

  107. A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  108. J.M. Pérez-Pomares, R.A. Foty, Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 28(8), 809–821 (2006)

    Google Scholar 

  109. K. Pham, H.B. Frieboes, V. Cristini, J.S. Lowengrub, Predictions of tumour morphological stability and evaluation against experimental observations. J. R. Soc. Interface 8(54), 16–29 (2011)

    Google Scholar 

  110. J.M. Pimiento, E.M. Larkin, K.S.M. Smalley, G.L. Wiersma, N.R. Monks, I.V. Fedorenko, C.A. Peterson, B.J. Nickoloff, Melanoma genotypes and phenotypes get personal. Lab. Invest. 93, 858–867 (2013)

    Google Scholar 

  111. C.P. Please, G.J. Pettet, D.L.S. McElwain, A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett. 11, 89–94 (1998)

    MathSciNet  MATH  Google Scholar 

  112. C.P. Please, G.J. Pettet, D.L.S. McElwain, Avascular tumour dynamics and necrosis. Math. Model Methods Appl. Sci. 9, 569–579 (1999)

    MATH  Google Scholar 

  113. N.J. Poplawskia, U. Agero, J.S. Gens, M. Swat, J.A. Glazier, A.R. Anderson, Front instabilities and invasiveness of simulated avascular tumors. Bull. Math. Biol. 71, 1189–1227 (2009)

    MathSciNet  Google Scholar 

  114. L. Preziosi, H.M. Byrne, modelling solid tumor growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)

    Google Scholar 

  115. L. Preziosi, A. Farina, On Darcy law for growing porous media. Int. J. Nonlinear Mech. 37, 485–491 (2002)

    MATH  Google Scholar 

  116. L. Preziosi, G. Vitale, A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Model Meth. Appl. S 21, 1901–1932 (2011)

    MathSciNet  MATH  Google Scholar 

  117. A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, R.M. Fygenson, B.I. Shraiman, Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. USA 109(3), 739–744 (2012)

    Google Scholar 

  118. J. Ranft, M. Basan, J. Elgeti, J.F. Joanny, J. Prost, F. Juelicher, Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. USA 107(49), 20863–20868 (2010)

    Google Scholar 

  119. K.A. Rejniak, An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J. Theor. Biol. 247, 186–204 (2007)

    MathSciNet  Google Scholar 

  120. L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De Maria, Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123), 111–115 (2007)

    Google Scholar 

  121. E.K. Rodriguez, A. Hoger, A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Google Scholar 

  122. T. Roose, P.A. Netti, L.L. Munn, Y. Boucher, R.K. Jain, Solid stress generated by spheroid growth estimated using a linear poroelasticity model small star, filled. Microvasc. Res. 66(3), 204–212 (2003)

    Google Scholar 

  123. T. Roose, S.J. Chapman, P.K. Maini, Mathematical models of avascular tumor growth. SIAM Rev. 49, 179–208 (2007)

    MathSciNet  MATH  Google Scholar 

  124. M. Shackleton, E. Quintana, E.R. Fearon, S.J. Morrison, Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5), 822–829 (2009)

    Google Scholar 

  125. M.A. Shannon, B. Rubinsky, The effect of tumor growth on the stress distribution in tissue. Adv. Biol. Mass Transfer HTD ASME 231, 35–39 (1992)

    Google Scholar 

  126. H.M. Shaw, W.H. McCarthy, Small-diameter malignant melanoma: a common diagnosis in new South Wales, Australia. J. Am. A Dermatol. 27, 679–682 (1992)

    Google Scholar 

  127. S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, T. Bayani, J. Hide, R. Henkelman, M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells. Nature 432(7015), 396–340 (2004)

    Google Scholar 

  128. G.G. Steel, L.F. Lamerton, The growth rate of human tumours. Br. J. Cancer 20(1), 74–86 (1966)

    Google Scholar 

  129. M.S. Steinberg, Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17(4), 281–286 (2007)

    Google Scholar 

  130. M. Stohrer, Y. Boucher, M. Stangassinger, R.K. Jain, Oncotic pressure in solid tumors is elevated. Cancer Res. 60(15), 4251–4255 (2000)

    Google Scholar 

  131. M. Stücker, A. Struk, P. Altmeyer, M. Herde, H. Baumgärtl, D.W. Lübbers, The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J. Physiol. 538, 985–994 (2002)

    Google Scholar 

  132. W.C. Summers, Dynamics of tumor growth: a mathematical model. Growth 30(3), 333–338 (1966)

    Google Scholar 

  133. R.M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849), 177–184 (1988)

    Google Scholar 

  134. R.M. Sutherland, R.E. Durand, Hypoxic cells in an in vitro tumour model. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 23(3), 235–246 (1973)

    Google Scholar 

  135. R.M. Sutherland, J.A. McCredie, W.R. Inch, Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl. Cancer Inst. 46(1), 113–120 (1971)

    Google Scholar 

  136. W.R. Tinga, A.G. Voss, D.F. Blossey, Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys. 44, 3897–3902 (1973)

    Google Scholar 

  137. R.H. Thomlison, L.H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9(4), 539–549 (1955)

    Google Scholar 

  138. P.L. Townes, J. Holfreter, Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1995)

    Google Scholar 

  139. C. Truesdell, Rational Thermodynamics (Springer, New York, 1984)

    MATH  Google Scholar 

  140. C. Truesdell, R. Toupin, The classical field theory, in Handbuch der Physik (Springer, Berlin, 1960)

    Google Scholar 

  141. R. Vandiver, A. Goriely, Differential growth and residual stress in cylindrical elastic structures. Philos. Transact. A Math. Phys. Eng. Sci. 367(1902), 3607–3630 (2009)

    MathSciNet  MATH  Google Scholar 

  142. K.Y. Volokh, Stresses in growing soft tissues. Acta Biomater. 2(5), 493–504 (2006)

    Google Scholar 

  143. R.A. Weinberg, One Renegade Cell: How Cancer Begins (Phoenix, London, 2009)

    Google Scholar 

  144. M.A. Weinstock, Cutaneous melanoma: public health approach to early detection Dermatol. Ther. 19, 26–31 (2006)

    Google Scholar 

  145. R. Wette, E.Y. Rodin, B. Katz, Stochastic processes for solid tumor kinetics i. Surface-regulated growth. Math. Biosci. 19, 231–255 (1974)

    MATH  Google Scholar 

  146. R. Wette, B. Katz, E.Y. Rodin, Stochastic processes for solid tumor kinetics ii. Diffusion-regulated growth. Math. Biosci. 21, 311–338 (1974)

    MATH  Google Scholar 

  147. H. Wiig, R.K. Reed, O. Tenstad, Interstitial fluid pressure, composition of interstitium, and interstitial exclusion of albumin in hypothyroid rats. Am. J. Physiol. Heart Circ. Physiol. 278(5), H1627–H1639 (2000)

    Google Scholar 

  148. B.S. Winters, S.R. Shepard, R.A. Foty, Biophysical measurement of brain tumor cohesion. Int. J. Cancer 114(3), 371–379 (2005)

    Google Scholar 

  149. S.M. Wise, J.S. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth:model and numerical method. J. Theor. Biol. 253(3), 524–543 (2008)

    MathSciNet  Google Scholar 

  150. J. Xu, K. Gupta, W.V. Stoecker, Y. Krishnamurthy, H.S. Rabinovitz, A. Bangert, D. Calcara, M. Oliviero, J.M. Malters, R. Drugge, R.J. Stanley, R.H. Moss, M.E. Celebi, Analysis of globule types in malignant melanoma. Arch. Dermatol. 145(11), 1245–1251 (2009)

    Google Scholar 

  151. H. Yabu, T. Higuchi, M. Shimomura, Unique phase-separation structures of block-copolymer nanoparticles. Adv. Mater. 17, 2062–2065 (2005)

    Google Scholar 

  152. X. Zheng, S.M. Wise, V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67(2), 211–259 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This chapter is a summary of results about tumor modelling obtained in Ecole Normale Supérieure during these last years. I strongly acknowledge three Ph.D students, Julien Dervaux, Clément Chatelain and Thibaut Balois, for their intensive collaboration on this very rich topic between mathematics, nonlinear and soft matter physics and biology. This work is supported in part by AAP INSERM 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Ben Amar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amar, M.B. (2014). Avascular Tumor Growth Modelling: Physical Insights to Skin Cancer. In: d'Onofrio, A., Gandolfi, A. (eds) Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0458-7_3

Download citation

Publish with us

Policies and ethics