Skip to main content

Biomarkers for Concussion

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

Diagnostic and prognostic tools for risk stratification of concussion patients are limited in the early stages of injury in the acute setting. Unlike other organ-based diseases where rapid diagnosis employing biomarkers from blood tests is clinically essential to guide diagnosis and treatment, such as for myocardial ischemia or kidney and liver dysfunction, there are no rapid, definitive diagnostic tests for traumatic brain injury (TBI). Research in the field of TBI biomarkers has increased exponentially over the last 20 years with most of the publications on the topic of TBI biomarkers occurring in the last 10 years. Accordingly, studies assessing biomarkers in TBI have looked at a number of potential markers that could lend diagnostic and, prognostic, as well as therapeutic information. Despite the large number of published studies, there is still a lack of any FDA-approved biomarkers for clinical use in adults and children.

Developments in the field of proteomics, along with improved laboratory techniques, have led to the discovery and rapid detection of new biomarkers not previously available. Proteomic research has recently developed due to advances in protein separation, identification, and quantification technologies that only became available in the last decade. Some proteins are highly expressed in the cerebrospinal fluid following a TBI. However, this does not necessarily translate into availability in peripheral blood. With the increasing sensitivity of analytical tools for biomarker detection, measurement of biomarkers in peripheral blood has also improved.

In an effort to prevent chronic traumatic encephalopathy (CTE) and long-term consequences of concussion/mild TBI, early diagnostic and prognostic tools are becoming increasingly important, particularly in sports injuries and in military personnel where concussions/mild TBI are common occurrences. The studies conducted on biofluid biomarkers for mild TBI to date show great promise. Should serum biomarkers for TBI be validated and become widely available, they could have many roles. They could help with clinical decision making by clarifying injury severity and help monitor progression of injury and/or recovery. Biomarkers could have a role in managing patients at high risk of repeated injury and could be incorporated into guidelines for return to duty, work, or sports activities.

This chapter will discuss the current literature on biofluid biomarkers for concussion/mild TBI, address gaps in research, and discuss their future role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kesler EA. APECT, MR and quantitative MR imaging: correlates with neuropsycholgical. Brain Inj. 2000;14:851–7.

    CAS  PubMed  Google Scholar 

  2. Jagoda AS, Bazarian JJ, Bruns Jr JJ, Cantrill SV, Gean AD, Howard PK, et al. Clinical policy: neuroimaging and decisionmaking in adult mild traumatic brain injury in the acute setting. Ann Emerg Med. 2008;52(6):714–48.

    PubMed  Google Scholar 

  3. Benson RR, Gattu R, Sewick B, Kou Z, Zakariah N, Cavanaugh JM, et al. Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation. 2013;31(3):261–79.

    Google Scholar 

  4. Govind V, Gold S, Kaliannan K, Saigal G, Falcone S, Arheart KL, et al. Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma. 2010;27(3):483–96.

    PubMed  Google Scholar 

  5. Millis SR, Rosenthal M, Novack TA, Sherer M, Nick TG, Kreutzer JS, et al. Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil. 2001;16(4):343–55.

    CAS  PubMed  Google Scholar 

  6. Alves W, Macciocchi S, Barth JT. Postconcussive symptoms after uncomplicated mild head injury. J Head Trauma Rehabil. 1993;8(3):48–59.

    Google Scholar 

  7. Rimel RW, Giordani B, Barth JT, Boll TJ, Jane JA. Disability caused by minor head injury. Neurosurgery. 1981;9(3):221–8.

    CAS  PubMed  Google Scholar 

  8. Alexander MP. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology. 1995;45(7):1253–60.

    CAS  PubMed  Google Scholar 

  9. Barth JT, Macciocchi SN, Giordani B, Rimel R, Jane JA, Boll TJ. Neuropsychological sequelae of minor head injury. Neurosurgery. 1983;13(5):529–33.

    CAS  PubMed  Google Scholar 

  10. Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30(1):179–88, xi.

    Google Scholar 

  11. Gavett BE, Cantu RC, Shenton M, Lin AP, Nowinski CJ, McKee AC, et al. Clinical appraisal of chronic traumatic encephalopathy: current perspectives and future directions. Curr Opin Neurol. 2012;24(6):525–31.

    Google Scholar 

  12. Graham DI, Adams JH, Nicoll JA, Maxwell WL, Gennarelli TA. The nature, distribution and causes of traumatic brain injury. Brain Pathol. 1995;5(4):397–406.

    CAS  PubMed  Google Scholar 

  13. Graham DI, Horsburgh K, Nicoll JA, Teasdale GM. Apolipoprotein E and the response of the brain to injury. Acta Neurochir Suppl. 1999;73:89–92.

    CAS  PubMed  Google Scholar 

  14. Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil. 2005;20(1):76–94.

    PubMed  Google Scholar 

  15. Povlishock JT. Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol. 1992;2(1):1–12.

    CAS  PubMed  Google Scholar 

  16. Kochanek PM, Berger RP, Bayr H, Wagner AK, Jenkins LW, Clark RS. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care. 2008;14(2):135–41.

    PubMed  Google Scholar 

  17. Papa L. Exploring the role of biomarkers for the diagnosis and management of traumatic brain injury patients. In: Man TK, Flores RJ, editors. Proteomics—human diseases and protein functions. 1st ed. Rijeka, Croatia: InTech Open Access Publisher; 2012.

    Google Scholar 

  18. Papa L, Ramia MM, Kelly JM, Burks SS, Pawlowicz A, Berger RP. Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma. 2013;30(5):324–38.

    PubMed  Google Scholar 

  19. Papa L, Robinson G, Oli M, Pineda J, Demery J, Brophy G, et al. Use of biomarkers for diagnosis and management of traumatic brain injury patients. Expert Opin Med Diagn. 2008;2(8):937–45.

    PubMed  Google Scholar 

  20. Xiong H, Liang WL, Wu XR. [Pathophysiological alterations in cultured astrocytes exposed to hypoxia/reoxygenation]. Sheng Li Ke Xue Jin Zhan. 2000;31(3):217–21.

    CAS  PubMed  Google Scholar 

  21. Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37(4):417–29.

    CAS  PubMed  Google Scholar 

  22. Olsson B, Zetterberg H, Hampel H, Blennow K. Biomarker-based dissection of neurodegenerative diseases. Prog Neurobiol. 2011;95(4):520–34.

    CAS  PubMed  Google Scholar 

  23. Missler U. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997;28:1956–60.

    CAS  PubMed  Google Scholar 

  24. Ytrebø LM, Nedredal GI, Korvald C, Holm Nielsen OJ, Ingebrigtsen T, et al. Renal elimination of protein S-100beta in pigs with acute encephalopathy. Scand J Clin Lab Invest. 2001;61:217–25.

    PubMed  Google Scholar 

  25. Jonsson HJP, Hoglund P, Alling C, Blomquist S. The elimination of S-100b and renal function after cardiac surgery. J Cardiothorac Vasc Anesth. 2000;14:698–701.

    CAS  PubMed  Google Scholar 

  26. Usui AKK, Abe T, Murase M, Tanaka M, Takeuchi E. S-100ao protein in blood and urine during open-heart surgery. Clin Chem. 1989;35:1942–4.

    CAS  PubMed  Google Scholar 

  27. Raabe A, Grolms C, Seifert V. Serum markers of brain damage and outcome prediction in patients after severe head injury. Br J Neurosurg. 1999;13(1):56–9.

    CAS  PubMed  Google Scholar 

  28. Haimoto H, Hosoda S, Kato K. Differential distribution of immunoreactive S100-a and S100-b proteins in normal nonnervous human tissues. Lab Invest. 1987;57:489–98.

    CAS  PubMed  Google Scholar 

  29. Woertgen C, Rothoerl RD, Holzschuh M, Metz C, Brawanski A. Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir (Wien). 1997;139(12):1161–4; discussion 1165.

    Google Scholar 

  30. Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma. 2000;17(8):641–7.

    CAS  PubMed  Google Scholar 

  31. Korfias S, Stranjalis G, Boviatsis E, Psachoulia C, Jullien G, Gregson B, et al. Serum S-100B protein monitoring in patients with severe traumatic brain injury. Intensive Care Med. 2007;33(2):255–60.

    CAS  PubMed  Google Scholar 

  32. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75(20):1786–93.

    CAS  PubMed  Google Scholar 

  33. Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Kochanek PM. Serum S100B concentrations are increased after closed head injury in children: a preliminary study. J Neurotrauma. 2002;19(11):1405–9.

    PubMed  Google Scholar 

  34. Ingebrigtsen T, Romner B. Management of minor head injuries in hospitals in Norway. Acta Neurol Scand. 1997;95(1):51–5.

    CAS  PubMed  Google Scholar 

  35. Waterloo K, Ingebrigtsen T, Romner B. Neuropsychological function in patients with increased serum levels of protein S-100 after minor head injury. Acta Neurochir (Wien). 1997;139(1):26–31; discussion 31–2.

    Google Scholar 

  36. Ingebrigtsen T, Romner B. Serial S-100 protein serum measurements related to early magnetic resonance imaging after minor head injury. Case report. J Neurosurg. 1996;85(5):945–8.

    CAS  PubMed  Google Scholar 

  37. Ingebrigtsen T, Waterloo K, Jacobsen EA, Langbakk B, Romner B. Traumatic brain damage in minor head injury: relation of serum S-100 protein measurements to magnetic resonance imaging and neurobehavioral outcome. Neurosurgery. 1999;45(3):468–75; discussion 75–6.

    Google Scholar 

  38. Ingebrigtsen T, Romner B, Marup-Jensen S, Dons M, Lundqvist C, Bellner J, et al. The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj. 2000;14(12):1047–55.

    CAS  PubMed  Google Scholar 

  39. Muller K, Townend W, Biasca N, Unden J, Waterloo K, Romner B, et al. S100B serum level predicts computed tomography findings after minor head injury. J Trauma. 2007;62(6):1452–6.

    CAS  PubMed  Google Scholar 

  40. Biberthaler P, Linsenmeier U, Pfeifer KJ, Kroetz M, Mussack T, Kanz KG, et al. Serum S-100B concentration provides additional information for the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock. 2006;25(5):446–53.

    CAS  PubMed  Google Scholar 

  41. Phillips JP, Jones HM, Hitchcock R, Adama N, Thompson RJ. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury. Br Med J. 1980;281(6243):777–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Rothoerl RD, Woertgen C, Holzschuh M, Metz C, Brawanski A. S-100 serum levels after minor and major head injury. J Trauma. 1998;45(4):765–7.

    CAS  PubMed  Google Scholar 

  43. Piazza O, Storti MP, Cotena S, Stoppa F, Perrotta D, Esposito G, et al. S100B is not a reliable prognostic index in paediatric TBI. Pediatr Neurosurg. 2007;43(4):258–64.

    CAS  PubMed  Google Scholar 

  44. Bechtel K, Frasure S, Marshall C, Dziura J, Simpson C. Relationship of serum S100B levels and intracranial injury in children with closed head trauma. Pediatrics. 2009;124(4):e697–704.

    PubMed  Google Scholar 

  45. Neselius S, Brisby H, Theodorsson A, Blennow K, Zetterberg H, Marcusson J. CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS One. 2012;7(4):e33606.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Stalnacke BM, Tegner Y, Sojka P. Playing ice hockey and basketball increases serum levels of S-100B in elite players: a pilot study. Clin J Sport Med. 2003;13(5):292–302.

    PubMed  Google Scholar 

  47. Stalnacke BM, Tegner Y, Sojka P. Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: a pilot study. Brain Inj. 2004;18(9):899–909.

    PubMed  Google Scholar 

  48. Rothoerl RD, Woertgen C. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;49(6):1490–1; author reply 2–3.

    Google Scholar 

  49. Romner B, Ingebrigtsen T. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;49(6):1490; author reply 2–3.

    Google Scholar 

  50. Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergen G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;49(5):1272–3.

    Google Scholar 

  51. Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H, et al. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma. 2004;57(5):1006–12.

    CAS  PubMed  Google Scholar 

  52. Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971;28(2):351–4.

    CAS  PubMed  Google Scholar 

  53. Duchen LW. General pathology of neurons and neuroglia. In: Adams JA, Corsellis JAN, Duchen LW, editors. Greenfield’s neuropathology. London: Edward Arnold; 1984. p. 1–52.

    Google Scholar 

  54. Baydas G, Nedzvetskii VS, Tuzcu M, Yasar A, Kirichenko SV. Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E. Eur J Pharmacol. 2003;462(1–3):67–71.

    CAS  PubMed  Google Scholar 

  55. Mouser PE, Head E, Ha KH, Rohn TT. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am J Pathol. 2006;168(3):936–46.

    CAS  PubMed  Google Scholar 

  56. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31(11):2670–7.

    CAS  PubMed  Google Scholar 

  57. Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999;45(1):138–41.

    CAS  PubMed  Google Scholar 

  58. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;21(11):1553–61.

    PubMed  Google Scholar 

  59. van Geel WJ, de Reus HP, Nijzing H, Verbeek MM, Vos PE, Lamers KJ. Measurement of glial fibrillary acidic protein in blood: an analytical method. Clin Chim Acta. 2002;326(1–2):151–4.

    PubMed  Google Scholar 

  60. Nylen K, Ost M, Csajbok LZ, Nilsson I, Blennow K, Nellgard B, et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci. 2006;240(1–2):85–91.

    CAS  PubMed  Google Scholar 

  61. Mondello S, Papa L, Buki A, Bullock R, Czeiter E, Tortella F, et al. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care. 2011;15(3):R156.

    PubMed  Google Scholar 

  62. Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology. 2012;78(18):1428–33.

    CAS  PubMed  Google Scholar 

  63. Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med. 2012;59(6):471–83.

    PubMed  Google Scholar 

  64. Zetterberg H, Hietala MA, Jonsson M, Andreasen N, Styrud E, Karlsson I, et al. Neurochemical aftermath of amateur boxing. Arch Neurol. 2006;63(9):1277–80.

    PubMed  Google Scholar 

  65. Skogseid IM, Nordby HK, Urdal P, Paus E, Lilleaas F. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir (Wien). 1992;115(3–4):106–11.

    CAS  Google Scholar 

  66. Schmechel D, Marangos PJ, Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978;276(5690):834–6.

    CAS  PubMed  Google Scholar 

  67. Ergun R, Bostanci U, Akdemir G, Beskonakli E, Kaptanoglu E, Gursoy F, et al. Prognostic value of serum neuron-specific enolase levels after head injury. Neurol Res. 1998;20(5):418–20.

    CAS  PubMed  Google Scholar 

  68. Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol. 1995;43(3):267–70; discussion 70–1.

    Google Scholar 

  69. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg. 1996;10(5):471–6.

    CAS  PubMed  Google Scholar 

  70. Fridriksson T, Kini N, Walsh-Kelly C, Hennes H. Serum neuron-specific enolase as a predictor of intracranial lesions in children with head trauma: a pilot study. Acad Emerg Med. 2000;7(7):816–20.

    CAS  PubMed  Google Scholar 

  71. Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg. 2005;103(1 Suppl):61–8.

    PubMed  Google Scholar 

  72. Berger RP, Beers SR, Richichi R, Wiesman D, Adelson PD. Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J Neurotrauma. 2007;24(12):1793–801.

    PubMed  Google Scholar 

  73. Varma S, Janesko KL, Wisniewski SR, Bayir H, Adelson PD, Thomas NJ, et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J Neurotrauma. 2003;20(8):781–6.

    PubMed  Google Scholar 

  74. Bandyopadhyay S, Hennes H, Gorelick MH, Wells RG, Walsh-Kelly CM. Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury. Acad Emerg Med. 2005;12(8):732–8.

    PubMed  Google Scholar 

  75. Johnsson P, Blomquist S, Luhrs C, Malmkvist G, Alling C, Solem JO, et al. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg. 2000;69(3):750–4.

    CAS  PubMed  Google Scholar 

  76. Ramont L, Thoannes H, Volondat A, Chastang F, Millet MC, Maquart FX. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med. 2005;43(11):1215–7.

    CAS  PubMed  Google Scholar 

  77. Stalnacke BM, Ohlsson A, Tegner Y, Sojka P. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br J Sports Med. 2006;40(4):313–6.

    PubMed  Google Scholar 

  78. Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci. 1981;49(3):429–38.

    CAS  PubMed  Google Scholar 

  79. Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K. Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol. 2000;20(13):4691–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Gong B, Leznik E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect. 2007;20(6):365–70.

    CAS  PubMed  Google Scholar 

  81. Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, Plaum J, et al. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma. 2009;26(11):1867–77.

    PubMed  Google Scholar 

  82. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas III JJ, Oli MW, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38(1):138–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Brophy G, Mondello S, Papa L, Robicsek S, Gabrielli A, Tepas Iii J, et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (Uch-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma. 2011;28(6):861–70.

    PubMed  Google Scholar 

  84. Berger RP, Hayes RL, Richichi R, Beers SR, Wang KK. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and alphaII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma. 2012;29(1):162–7.

    PubMed  Google Scholar 

  85. Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg. 2012;72(5):1335–44.

    PubMed  Google Scholar 

  86. Goodman SR, Zimmer WE, Clark MB, Zagon IS, Barker JE, Bloom ML. Brain spectrin: of mice and men. Brain Res Bull. 1995;36(6):593–606.

    CAS  PubMed  Google Scholar 

  87. Riederer BM, Zagon IS, Goodman SR. Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol. 1986;102(6):2088–97.

    CAS  PubMed  Google Scholar 

  88. Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, et al. Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem. 1998;273(35):22490–7.

    CAS  PubMed  Google Scholar 

  89. McGinn MJ, Kelley BJ, Akinyi L, Oli MW, Liu MC, Hayes RL, et al. Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. J Neuropathol Exp Neurol. 2009;68(3):241–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Pike BR, Flint J, Dave JR, Lu XC, Wang KK, Tortella FC, et al. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2004;24(1):98–106.

    CAS  PubMed  Google Scholar 

  91. Ringger NC, O’Steen BE, Brabham JG, Silver X, Pineda J, Wang KK, et al. A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. J Neurotrauma. 2004;21(10):1443–56.

    CAS  PubMed  Google Scholar 

  92. Cardali S, Maugeri R. Detection of alphaII-spectrin and breakdown products in humans after severe traumatic brain injury. J Neurosurg Sci. 2006;50(2):25–31.

    CAS  PubMed  Google Scholar 

  93. Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, et al. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. 2007;24(2):354–66.

    PubMed  Google Scholar 

  94. Papa L, D’Avella D, Aguennouz M, Angileri FF, de Divitiis O, Germano A, et al. Detection of alpha-II spectrin and breakdown products in humans after severe traumatic brain injury [abstract]. Acad Emerg Med. 2004;11(5):515–16.

    Google Scholar 

  95. Papa L, Lewis SB, Heaton S, Demery JA, Tepas JJ III, Wang KKW, et al. Predicting early outcome using alpha-II spectrin breakdown products in human CSF after severe traumatic brain injury [abstract]. Acad Emerg Med. 2006;13(5 Suppl 1):S39–40.

    Google Scholar 

  96. Papa L, Pineda J, Wang KKW, Lewis SB, Demery JA, Heaton S, et al. Levels of alpha-II spectrin breakdown products in human CSF and outcome after severe traumatic brain injury [abstract]. Acad Emerg Med. 2005;12(5 Suppl 1):139–40.

    Google Scholar 

  97. Farkas O, Polgar B, Szekeres-Bartho J, Doczi T, Povlishock JT, Buki A. Spectrin breakdown products in the cerebrospinal fluid in severe head injury—preliminary observations. Acta Neurochir (Wien). 2005;147(8):855–61.

    CAS  Google Scholar 

  98. Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, et al. AlphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27(7):1203–13.

    PubMed  Google Scholar 

  99. Brophy GM, Pineda JA, Papa L, Lewis SB, Valadka AB, Hannay HJ, et al. AlphaII-spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma. 2009;26(4):471–9.

    PubMed  Google Scholar 

  100. Papa L, Wang KW, Brophy GM, Demery JA, Silvestri S, Giordano P, et al. Serum levels of spectrin breakdown product 150 (SBDP150) distinguish mild traumatic brain injury from trauma and uninjured controls and predict intracranial injuries on CT and neurosurgical intervention. J Neurotrauma. 2012;29(Abstract Suppl):A28.

    Google Scholar 

  101. Kosik KS, Finch EA. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci. 1987;7(10):3142–53.

    CAS  PubMed  Google Scholar 

  102. Higuchi M, Lee VM, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med. 2002;2(2):131–50.

    CAS  PubMed  Google Scholar 

  103. Shaw GJ, Jauch EC, Zemlan FP. Serum cleaved tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med. 2002;39(3):254–7.

    PubMed  Google Scholar 

  104. Zemlan FP, Jauch EC, Mulchahey JJ, Gabbita SP, Rosenberg WS, Speciale SG, et al. C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res. 2002;947(1):131–9.

    CAS  PubMed  Google Scholar 

  105. Chatfield DA, Zemlan FP, Day DJ, Menon DK. Discordant temporal patterns of S100beta and cleaved tau protein elevation after head injury: a pilot study. Br J Neurosurg. 2002;16(5):471–6.

    CAS  PubMed  Google Scholar 

  106. Trojanowski JQ, Schuck T, Schmidt ML, Lee VM. Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem. 1989;37(2):209–15.

    CAS  PubMed  Google Scholar 

  107. Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H, et al. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology. 2003;60(9):1457–61.

    CAS  PubMed  Google Scholar 

  108. Marklund N, Blennow K, Zetterberg H, Ronne-Engstrom E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg. 2009;110(6):1227–37.

    CAS  PubMed  Google Scholar 

  109. Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67(9):1600–4.

    CAS  PubMed  Google Scholar 

  110. Sjogren M, Blomberg M, Jonsson M, Wahlund LO, Edman A, Lind K, et al. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res. 2001;66(3):510–6.

    CAS  PubMed  Google Scholar 

  111. Julien JP, Mushynski WE. Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol. 1998;61:1–23.

    CAS  PubMed  Google Scholar 

  112. Buki A, Povlishock JT. All roads lead to disconnection?—Traumatic axonal injury revisited. Acta Neurochir (Wien). 2006;148(2):181–93; discussion 93–4.

    Google Scholar 

  113. Zurek J, Bartlova L, Fedora M. Hyperphosphorylated neurofilament NF-H as a predictor of mortality after brain injury in children. Brain Inj. 2012;25(2):221–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Papa M.D., C.M., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papa, L. (2014). Biomarkers for Concussion. In: Slobounov, S., Sebastianelli, W. (eds) Concussions in Athletics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0295-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0295-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0294-1

  • Online ISBN: 978-1-4939-0295-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics