Skip to main content

A New Approach to the Understanding of the Mechanism of Lead Electrodeposition

  • Chapter
  • First Online:
Electrodeposition and Surface Finishing

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 57))

Abstract

The most important applications of lead include the production of high purity active materials for acid battery [1], for semiconductors [2, 3], and for the fabrication of electrochromic devices [4]. In the form of powder, lead is widely used in industries of gas and oil exploration, radiological medical protective clothing, as an industrial X-ray shield, golf club manufacture, and antifriction products [5]. The electrodeposition technique is a very suitable way to obtain lead in the form suitable for the application in the above-mentioned technologies. For example, the advantage of use of electrodeposition technique in the production of lead in the powder form lies in the fact that lead powder is produced at low overpotentials and hence with small spent of energy. The open porous structures of lead with the extremely high surface area (the honeycomb-like ones), which are ideally situated for electrodes in electrochemical devices such as fuel cells, batteries, and sensors, are also possible to get by the electrodeposition techniques [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlov D (1993) J Power Sources 42:345

    Article  CAS  Google Scholar 

  2. Rashkova B, Guel B, Potzschke RT, Staikov G, Lorenz WJ (1998) Electrochim Acta 43:3021

    Article  CAS  Google Scholar 

  3. Ehlers C, Konig U, Staikov G, Schultze JW (2002) Electrochim Acta 47:379

    Article  Google Scholar 

  4. Avellaneda CO, Napolitano MA, Kaibara EK, Bulhoes LOS (2005) Electrochim Acta 50:1317

    Article  CAS  Google Scholar 

  5. http://www.nuclead.com/leadpowderapps.html.

  6. Cherevko S, Xing X, Chung C-H (2011) Appl Surf Sci 257:8054

    Article  CAS  Google Scholar 

  7. Winand R (1994) Electrochim Acta 39:1091

    Article  CAS  Google Scholar 

  8. Carlos IA, Malaquias MA, Oizumi MM, Matsuo TT (2001) J Power Sources 92:56

    Article  CAS  Google Scholar 

  9. Wong SM, Abrantes LM (2005) Electrochim Acta 51:619

    Article  CAS  Google Scholar 

  10. Doulakas L, Novy K, Stucki S, Comninellis Ch (2000) Electrochim Acta 46:349

    Article  CAS  Google Scholar 

  11. Scharifker B, Hills G (1983) Electrochim Acta 28:879

    Article  CAS  Google Scholar 

  12. Mostany J, Parra J, Scharifker BR (1986) J Appl Electrochem 16:333

    Article  CAS  Google Scholar 

  13. Mostany J, Mozota J, Scharifker BR (1984) J Electroanal Chem 177:25

    Article  CAS  Google Scholar 

  14. Popov KI, Krstajić NV, Pantelić RM, Popov SR (1985) Surf Technol 26:177

    Article  CAS  Google Scholar 

  15. Exposito E, Gonzalez-Garcıa J, Bonete P, Montiel V, Aldaz A (2000) J Power Sources 87:137

    Article  CAS  Google Scholar 

  16. Popov KI, Stojilković ER, Radmilović V, Pavlović MG (1997) Powder Technol 93:55

    Article  CAS  Google Scholar 

  17. Ghergari L, Oniciu L, Muresan L, Pantea A, Topan VA, Ghertoiu D (1991) J Electroanal Chem 313:303

    Article  CAS  Google Scholar 

  18. Muresan L, Oniciu L, Froment M, Maurin G (1992) Electrochim Acta 37:2249

    Article  CAS  Google Scholar 

  19. Muresan L, Oniciu L, Wiart R (1993) J Appl Electrochem 23:66

    Article  CAS  Google Scholar 

  20. Muresan L, Oniciu L, Wiart R (1994) J Appl Electrochem 24:332

    Article  CAS  Google Scholar 

  21. Hazza A, Pletcher D, Wills R (2004) Phys Chem Chem Phys 6:1773

    Article  CAS  Google Scholar 

  22. Pletcher D, Wills R (2004) Phys Chem Chem Phys 6:1779

    Article  CAS  Google Scholar 

  23. Ghali E, Girgis M (1985) Metall Mater Trans B 16:489

    Article  Google Scholar 

  24. Carlos IA, Siqueira JLP, Finazzi GA, de Almeida MRH (2003) J Power Sources 117:179

    Article  CAS  Google Scholar 

  25. Popov KI, Živković PM, Grgur BN (2007) Electrochim Acta 52:4696

    Article  CAS  Google Scholar 

  26. Popov KI, Živković PM, Krstić SB, Nikolić ND (2009) Electrochim Acta 54:2924

    Article  CAS  Google Scholar 

  27. Popov KI, Živković PM, Nikolić ND (2010) The effect of morphology of activated electrodes on their electrochemical activity. In: Djokić SS (ed) Electrodeposition: Theory and Practice, Modern Aspects of Electrochemistry, vol 48. Springer, pp 163–213

    Google Scholar 

  28. Popov KI, Nikolić ND (2012) General Theory of Disperse Metal Electrodeposits Formation. In: Djokić SS (ed) Electrochemical Production of Metal Powders, Modern Aspects of Electrochemistry, vol. 54. Springer, pp 1–62

    Google Scholar 

  29. Popov KI, Nikolić ND, Živković PM, Branković G (2010) Electrochim Acta 55:1919

    Article  CAS  Google Scholar 

  30. Nikolić ND, Branković G, Lačnjevac U (2012) J Solid State Electrochem 16:2121

    Article  Google Scholar 

  31. Jović VD, Nikolić ND, Lačnjevac UČ, Jović BM, Popov KI (2012) Morphology of Different Electrodeposited Pure Metal Powders. In: Djokić SS (ed) Electrochemical Production of Metal Powders, Modern Aspects of Electrochemistry, Vol. 54. Springer, pp 63–123

    Google Scholar 

  32. Nikolić ND, Popov KI, Živković PM, Branković G (2013) J Electroanal Chem 691:66

    Article  Google Scholar 

  33. Levich VG (1962) Physicochemical Hydrodynamics. Prentice – Hall, Inc: Englewood Cliffs, Ch. 2, NJ

    Google Scholar 

  34. Blagojević NS, Maksimović MD, Popov KI (1978) Chem Eng J 16:35

    Article  Google Scholar 

  35. Lorenz W (1954) Z Electrochem 58:912 (in German)

    CAS  Google Scholar 

  36. Mattsson BE, Bockris JO’M (1959) Trans Faraday Soc 55:1586

    Google Scholar 

  37. Newman JS (1973) Electrochemical Systems. Prentice-Hall, Inc. Engelwood Cliffs, N. J.

    Google Scholar 

  38. Fetter K (1967) Electrochemical Kinetics. Moscow, Khimiya, (in Russian)

    Google Scholar 

  39. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) Sensors 7:1

    Google Scholar 

  40. Djokić SS, Nikolić ND, Živković PM, Popov KI, Djokić NS (2011) ECS Trans 33:7

    Article  Google Scholar 

  41. Mandke MV, Han S-H, Pathan HM (2012) CrystEngComm 14:86

    Article  CAS  Google Scholar 

  42. Ni Y, Zhang Y, Zhang L, Hong J (2011) CrystEngComm 13:794

    Article  CAS  Google Scholar 

  43. Nikolić ND, Vaštag DjDj, Živković PM, Jokić B, Branković G (2013) Adv Powder Technol 24:674

    Google Scholar 

  44. Popov KI, Krstajić NV, Čekerevac MI (1996) The mechanism of formation of coarse and disperse electrodeposits. In: White RE, Conway BE, Bockris JO'M (eds) Modern Aspects of Electrochemistry, vol 30. Plenum Press, New York, pp 261–312

    Google Scholar 

  45. Popov KI, Pavlović MG, Jovićević JN (1989) Hydrometallurgy 23:127

    Article  CAS  Google Scholar 

  46. Wranglen G (1960) Electrochim Acta 2:130

    Article  CAS  Google Scholar 

  47. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  48. Despić AR, Popov KI (1972) Transport controlled deposition and dissolution of metals. In: Conway BE, Bockris JO'M (eds) Modern Aspects of Electrochemistry, vol 7. Plenum Press, New York, pp 199–313

    Google Scholar 

  49. Diggle JW, Despić AR, Bockris JO’M (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116:1503

    Article  CAS  Google Scholar 

  50. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) J Electroanal Chem 588:88

    Google Scholar 

  51. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2008) Powder Technol 185:195

    Google Scholar 

  52. Nikolić ND, Popov KI (2010) Hydrogen co-deposition effects on the structure of electrodeposited copper. In: Djokić SS (ed) Electrodeposition: Theory and Practice, Modern Aspects of Electrochemistry, vol 48. Springer, pp 1–70

    Google Scholar 

  53. Nikolić ND (2012) Porous Copper Electrodes Formed by the Constant and the Periodically Changing Regimes of Electrolysis. In: Djokić SS (ed) Electrochemical Production of Metal Powders, Modern Aspects of Electrochemistry, Vol. 54, Springer, pp 187–249

    Google Scholar 

  54. Nikolić ND, Branković G, Pavlović MG (2012) Powder Technol 22:271

    Article  Google Scholar 

  55. Orhan G, Hapci G (2010) Powder Technol 201:57

    Article  CAS  Google Scholar 

  56. Orhan G, Gezgin GG (2012) J Serb Chem Soc 77:651

    Article  CAS  Google Scholar 

  57. Živković PM, Nikolić ND, Gvozdenović M, Popov KI (2009) J Serb Chem Soc 74:291

    Article  Google Scholar 

  58. Popov KI, Krstajić NV, Popov SR (1983) Surf Technol 20:203

    Article  CAS  Google Scholar 

  59. Nikolić ND, Popov KI (2012) Electrodeposition of Copper Powders and Their Properties. In: Djokić SS (ed) Electrochemical Production of Metal Powders, Modern Aspects of Electrochemistry, Vol. 54, Springer, pp 125–185

    Google Scholar 

  60. Nikolić ND, Pavlović LjJ, Krstić SB, Pavlović MG, Popov KI (2008) Chem Eng Sci 63:2824

    Google Scholar 

  61. Popov KI, Grgur BN, Stojilković ER, Pavlović MG, Nikolić ND (1997) J Serb Chem Soc 62:433

    CAS  Google Scholar 

  62. Nikolić ND, Maksimović VM, Branković G, (2013) RSC Adv 3:7466

    Article  Google Scholar 

  63. Milchev A (2002) Electrocrystallization, Fundamentals of Nucleation and Growth. Kluwer Academic Publishers, Boston/Dordrecht/London, p. 24

    Google Scholar 

  64. Bockris JO’M, Reddy AKN, Gamboa-Aldeco M (2000) Modern Electrochemistry 2A, Fundamentals of Electrodics, Kluwer Academic / Plenum Publishers, New York, p. 1333

    Google Scholar 

  65. Nikolić ND, Maksimović VM, Branković G, Živković PM, Pavlović MG (2013) J Serb Chem Soc 78:1387

    Google Scholar 

  66. Popov KI, Živković PM, Nikolić ND (2011) J Serb Chem Soc 76:805

    Article  CAS  Google Scholar 

  67. Yao C-Z, Liu M, Zhang P, He X-H, Li G-R, Zhao W-X, Liu P, Tong Y-X (2008) Electrochim Acta 54:247

    Article  CAS  Google Scholar 

  68. Jordan M (2010) Electrodeposition of lead and lead alloys, in: M. Schlesinger, M. Paunovic (Eds.), Modern Electroplating, Fifth Edition, John Wiley & Sons, Inc., p. 251

    Google Scholar 

  69. Nikolić ND, Vaštag DjDj, Maksimović VM, Branković G, Trans Nonferrous Met Soc China, in press

    Google Scholar 

  70. NIST Standard Reference Database 46, NIST Critically Selected Stability Constants of Metal Complexes Database, version 3.0, compiled by R.M. Smith and A.E. Martell, U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

    Google Scholar 

  71. Kratgen J (1978) Atlas of Metal-Ligand Equilibria in Aqueous Solution. Series in Analitical Chemistry, Ellis Horwood, Chichester. UK

    Google Scholar 

  72. Cukrowska E, Cukrowski I (1998) Talanta 47:1175

    Article  CAS  Google Scholar 

  73. Pereira M, Mantas PQ (1998) J Eur Ceram Soc 18:565

    Article  CAS  Google Scholar 

  74. Wang Y, Chai L, Chang H, Peng X, Shu Y (2009) Trans Nonferrous Met Soc China 19:458.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Goran Branković for SEM analysis of investigated systems, to Dr. Vesna Maksimović for the XRD analysis of the powder particles, as well as to Prof. Dr. Predrag Živković for the digital simulations.

The work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under the research project: “Electrochemical synthesis and characterization of nanostructured functional materials for application in new technologies” (No. 172046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojša D. Nikolić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nikolić, N.D., Popov, K.I. (2014). A New Approach to the Understanding of the Mechanism of Lead Electrodeposition. In: Djokić, S. (eds) Electrodeposition and Surface Finishing. Modern Aspects of Electrochemistry, vol 57. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0289-7_2

Download citation

Publish with us

Policies and ethics