Skip to main content

Biomarkers of Cardiovascular Aging

  • Chapter
  • First Online:
Aging and Heart Failure

Abstract

Aging is a complex phenomenon that exerts a negative impact on the function of different organs including the heart. The life span and the aging state, measured as the decline of functional capacity and stress resistance, are not the same for every individual. Several investigators have attempted to evaluate the relationship between the biological age and chronological age; however, because of the genetic variations, no definitive conclusions can be made. Likewise, various biomarkers based on changes in body function and composition are employed for diagnostic and prognostic measures to understand the biological processes of aging, but no specific marker of aging has yet been identified. Furthermore, risk factors for cardiovascular disease including obesity, hypertension, atherosclerosis, diabetes, myocardial infarction, and cardiac hypertrophy are known to affect the aging process. Since cardiovascular disease is the leading cause of mortality in individuals over 65 years of age, biomarkers such as mediators of oxidative stress, inflammation, and several hormones are considered to be associated with cardiovascular aging. In view of the development of cardiac dysfunction in aging population, there is a need for the identification of possible biomarkers of aging that are independent of comorbidities. Such information may assist in the formulation of new strategies to improve the quality of life and health status of the elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verbrugge LM, Jette AM. The disablement process. Soc Sci Med. 1994;38:1–14.

    CAS  PubMed  Google Scholar 

  2. Schwartz JB, Zipes DP. Cardiovascular disease in the elderly. In: Braunwald E, Zipes DP, Libby P, editors. Heart disease. 8th ed. Philadelphia, PA: WB Saunders; 2007. p. 1925–49.

    Google Scholar 

  3. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronaryheart disease. Part 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.

    CAS  PubMed  Google Scholar 

  4. Domanski MJ, Davis BR, Pfeffer MA, et al. Isolated systolic hypertension: prognostic information provided by pulse pressure. Hypertension. 1999;34:375–80.

    CAS  PubMed  Google Scholar 

  5. Chae CU, Pfeffer MA, Glynn RJ, et al. Increased pulse pressure and risk of heart failure in the elderly. JAMA. 1999;281:634–9.

    CAS  PubMed  Google Scholar 

  6. Mitchell GF, Moyé LA, Braunwald E, et al. Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. SAVE investigators. Survival and Ventricular Enlargement. Circulation. 1997;96:4254–60.

    CAS  PubMed  Google Scholar 

  7. Baker III GT, Sprott RL. Biomarkers of aging. Exp Gerontol. 1988;23:223–39.

    PubMed  Google Scholar 

  8. De Gruttola VG, Clax P, DeMets DL, et al. Considerations in the evaluation of surrogate endpoints in clinical trials. Summary of a National Institutes of Health workshop. Control Clin Trials. 2001;22:485–502.

    PubMed  Google Scholar 

  9. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Google Scholar 

  10. National Heart, Lung and Blood Institute. Shaping the future of research: a strategic plan for the National Heart, Lung and Blood Institute. http://www.nhlbi.nih.gov/about/strategicplan/documents/StrategicPlan_Plain.pdf. Accessed 17 Oct 2012.

  11. Johnson TE. Recent results: biomarkers of aging. Exp Gerontol. 2006;41:1243–6.

    CAS  PubMed  Google Scholar 

  12. Warner HR. Current status of efforts to measure and modulate the biological rate of aging. J Gerontol A Biol Sci Med Sci. 2004;59:692–6.

    PubMed  Google Scholar 

  13. Corriveau H, Hébert R, Raîche M, et al. Postural stability in the elderly: empirical confirmation of a theoretical model. Arch Gerontol Geriatr. 2004;39:163–77.

    PubMed  Google Scholar 

  14. Mazzeo RS, Tanaka H. Exercise prescription for the elderly: current recommendations. Sports Med. 2001;31:809–18.

    CAS  PubMed  Google Scholar 

  15. Van Petten C. Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia. 2004;42:1394–413.

    PubMed  Google Scholar 

  16. Hamet P, Tremblay J. Genes of aging. Metabolism. 2003;52 Suppl 2:5–9.

    CAS  PubMed  Google Scholar 

  17. Manolio TA. Study designs to enhance identification of genetic factors in healthy aging. Nutr Rev. 2007;65:S228–33.

    PubMed  Google Scholar 

  18. Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA. 2005;102:5618–23.

    CAS  PubMed  Google Scholar 

  19. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann NY Acad Sci. 2006;1067:10–21.

    CAS  PubMed  Google Scholar 

  20. Kirkwood T. Age action. In: Changing expectations of life. Newcastle upon Tyne: Institute of Aging and Health, Newcastle University; 2007.

    Google Scholar 

  21. Crimmins E, Vasunilashorn S, Kim JK, Alley D. Biomarkers related to aging in human populations. Adv Clin Chem. 2008;46:161–216.

    CAS  PubMed  Google Scholar 

  22. Kannel WB. Sixty years of preventive cardiology: a Framingham perspective. Clin Cardiol. 2011;34:342–3.

    PubMed  Google Scholar 

  23. Januzzi Jr JL, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58:1881–9.

    CAS  PubMed  Google Scholar 

  24. de Filippi CR, de Lemos JA, Christenson RH, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494–502.

    Google Scholar 

  25. Knight JA. The biochemistry of aging. Adv Clin Chem. 2003;35:1–62.

    Google Scholar 

  26. Loft S, Høgh Danielsen P, Mikkelsen L, et al. Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans. 2008;36:1071–6.

    CAS  PubMed  Google Scholar 

  27. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    CAS  PubMed  Google Scholar 

  28. Ravanat JL, Di Mascio P, Martinez GR, et al. Singlet oxygen induces oxidation of cellular DNA. J Biol Chem. 2000;275:40601–4.

    CAS  PubMed  Google Scholar 

  29. López-Diazguerrero NE, Luna-López A, Gutiérrez-Ruiz MC, et al. Susceptibility of DNA to oxidative stressors in young and aging mice. Life Sci. 2005;77:2840–54.

    PubMed  Google Scholar 

  30. López-Torres M, Gredilla R, Sanz A, Barja G. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med. 2002;32:882–9.

    PubMed  Google Scholar 

  31. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res. 2004;567:1–61.

    CAS  PubMed  Google Scholar 

  32. Poulsen HE, Loft S, Prieme H, et al. Oxidative DNA damage in vivo: relationship to age, plasma antioxidants, drug metabolism, glutathione-S-transferase activity and urinary creatinine excretion. Free Radic Res. 1998;29:565–71.

    CAS  PubMed  Google Scholar 

  33. Loft S, Vistisen K, Ewertz M, et al. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis. 1992;13:2241–7.

    CAS  PubMed  Google Scholar 

  34. Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med. 1999;27:1151–63.

    CAS  PubMed  Google Scholar 

  35. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med. 2002;32:790–6.

    CAS  PubMed  Google Scholar 

  36. Dalle-Donne I, Giustarini D, Colombo R, et al. Protein carbonylation in human diseases. Trends Mol Med. 2003;9:169–76.

    CAS  PubMed  Google Scholar 

  37. Gil L, Siems W, Mazurek B, et al. Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res. 2006;40:495–505.

    CAS  PubMed  Google Scholar 

  38. Grune T, Merker K, Sandig G, Davies KJ. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun. 2003;305:709–18.

    CAS  PubMed  Google Scholar 

  39. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    CAS  PubMed  Google Scholar 

  40. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.

    CAS  PubMed  Google Scholar 

  41. Montuschi P, Barnes PJ, Roberts II LJ. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 2004;18:1791–800.

    CAS  PubMed  Google Scholar 

  42. Slatter DA, Bolton CH, Bailey AJ. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia. 2000;43:550–7.

    CAS  PubMed  Google Scholar 

  43. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res. 2003;42:318–43.

    CAS  PubMed  Google Scholar 

  44. Corti MC, Guralnik JM, Salive ME, et al. Clarifying the direct relation between total cholesterol levels and death from coronary heart disease in older persons. Ann Intern Med. 1997;126:753–60.

    CAS  PubMed  Google Scholar 

  45. Manolio TA, Pearson TA, Wenger NK, et al. Cholesterol and heart disease in older persons and women. Review of an NHLBI workshop. Ann Epidemiol. 1992;2:161–76.

    CAS  PubMed  Google Scholar 

  46. Colpo A. LDL cholesterol: “Bad” cholesterol or bad science? Am J Phys Surg. 2005;10:83–9.

    Google Scholar 

  47. Reed D, Yano K, Kagan A. Lipids and lipoproteins as predictors of coronary heart disease, stroke, and cancer in the Honolulu Heart Program. Am J Med. 1986;80:871–8.

    CAS  PubMed  Google Scholar 

  48. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Millar JS, Lichtenstein AH, Cuchel M, et al. Impact of age on the metabolism of VLDL, IDL, and LDL apolipoprotein B-100 in men. J Lipid Res. 1995;36:1155–67.

    CAS  PubMed  Google Scholar 

  50. Whayne TF, Alaupovic P, Curry MD, et al. Plasma apolipoprotein B and VLDL-, LDL-, and HDL-cholesterol as risk factors in the development of coronary artery disease in male patients examined by angiography. Atherosclerosis. 1981;39:411–24.

    CAS  PubMed  Google Scholar 

  51. Linton MF, Fazio S, National Cholesterol Education Program (NCEP)-the third Adult Treatment Panel (ATP III). A practical approach to risk assessment to prevent coronary artery disease and its complications. Am J Cardiol. 2003;92:19i–26.

    PubMed  Google Scholar 

  52. Gaziano JM, Hennekens CH, O’Donnell CJ, et al. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation. 1997;96:2520–5.

    CAS  PubMed  Google Scholar 

  53. Serra V, von Zglinicki T, Lorenz M, Saretzki G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem. 2003;278:6824–30.

    CAS  PubMed  Google Scholar 

  54. Rea IM, McMaster D, Donnelly J, et al. Malondialdehyde and measures of antioxidant activity in subjects from the Belfast Elderly Longitudinal Free-living Aging Study. Ann NY Acad Sci. 2004;1019:392–5.

    CAS  PubMed  Google Scholar 

  55. Berr C, Richard MJ, Gourlet V, et al. Enzymatic antioxidant balance and cognitive decline in aging–the EVA study. Eur J Epidemiol. 2004;19:133–8.

    CAS  PubMed  Google Scholar 

  56. Richie Jr JP, Mills BJ, Lang CA. Correction of a glutathione deficiency in the aging mosquito increases its longevity. Proc Soc Exp Biol Med. 1987;184:113–7.

    CAS  PubMed  Google Scholar 

  57. Benzi G, Pastoris O, Marzatico F, Villa RF. Age-related effect induced by oxidative stress on the cerebral glutathione system. Neurochem Res. 1989;14:473–81.

    CAS  PubMed  Google Scholar 

  58. Jones DP, Mody Jr VC, Carlson JL, et al. Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med. 2002;33:1290–300.

    CAS  PubMed  Google Scholar 

  59. Byers T, Bowman B. Vitamin E supplements and coronary heart disease. Nutr Rev. 1993;51:333–6.

    CAS  PubMed  Google Scholar 

  60. Comstock GW, Helzlsouer KJ, Bush TL. Prediagnostic serum levels of carotenoids and vitamin E as related to subsequent cancer in Washington County, Maryland. Am J Clin Nutr. 1991;53(1 Suppl):260S–4.

    CAS  PubMed  Google Scholar 

  61. Akbaraly TN, Favier A, Berr C. Total plasma carotenoids and mortality in the elderly: results of the Epidemiology of Vascular Ageing (EVA) study. Br J Nutr. 2009;101:86–92.

    CAS  PubMed  Google Scholar 

  62. Calabrese V, Stella AM, Butterfield DA, Scapagnini G. Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance. Antioxid Redox Signal. 2004;6:895–913.

    CAS  PubMed  Google Scholar 

  63. Calabrese V, Signorile A, Cornelius C, et al. Practical approaches to investigate redox regulation of heat shock protein expression and intracellular glutathione redox state. Methods Enzymol. 2008;441:83–110.

    CAS  PubMed  Google Scholar 

  64. Amadio M, Scapagnini G, Laforenza U, et al. Post-transcriptional regulation of HSP70 expression following oxidative stress in SH-SY5Y cells: the potential involvement of the RNA-binding protein HuR. Curr Pharm Des. 2008;14:2651–8.

    CAS  PubMed  Google Scholar 

  65. Jin X, Wang R, Xiao C, et al. Serum and lymphocyte levels of heat shock protein 70 in aging: a study in the normal Chinese population. Cell Stress Chaperones. 2004;9:69–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Terry DF, Wyszynski DF, Nolan VG, et al. Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mech Ageing Dev. 2006;127:862–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Jin ZG, Melaragno MG, Liao DF, et al. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res. 2000;87:789–96.

    CAS  PubMed  Google Scholar 

  68. Marks AR. Cellular functions of immunophilins. Physiol Rev. 1996;76:631–49.

    CAS  PubMed  Google Scholar 

  69. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: Animal and human studies. Circulation. 2003;108:2034–40.

    PubMed  Google Scholar 

  70. Thomas M, Gavrila D, McCormick ML, et al. Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation. 2006;114:404–13.

    CAS  PubMed  Google Scholar 

  71. Nigro P, Satoh K, O’Dell MR, et al. Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2011;208:53–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Satoh K, Matoba T, Suzuki J, et al. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation. 2008;117:3088–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Satoh K, Nigro P, Matoba T, et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med. 2009;15:649–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49:241–8.

    CAS  PubMed  Google Scholar 

  75. Suzuki J, Jin ZG, Meoli DF, et al. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ Res. 2006;98:811–7.

    CAS  PubMed  Google Scholar 

  76. Wang YX, Martin-McNulty B, da Cunha V, et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation. 2005;111:2219–26.

    CAS  PubMed  Google Scholar 

  77. Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003;93:767–75.

    CAS  PubMed  Google Scholar 

  78. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25:1767–75.

    CAS  PubMed  Google Scholar 

  79. Pennesi G, Liu Z, Ciubotariu R, et al. TCR repertoire of suppressor CD8+CD28− T cell populations. Hum Immunol. 1999;60:291–304.

    CAS  PubMed  Google Scholar 

  80. Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:2–105.

    Google Scholar 

  81. Rifai N, Ridker PM. High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease. Clin Chem. 2001;47:403–11.

    CAS  PubMed  Google Scholar 

  82. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA. 1998;279:1477–82.

    CAS  PubMed  Google Scholar 

  83. Ridker PM, Cook N. Clinical usefulness of very high and very low levels of C-reactive protein across the full range of Framingham Risk Scores. Circulation. 2004;109:1955–9.

    PubMed  Google Scholar 

  84. Danesh J, Muir J, Wong YK, et al. Risk factors for coronary heart disease and acute-phase proteins. A population-based study. Eur Heart J. 1999;20:954–9.

    CAS  PubMed  Google Scholar 

  85. Kuller LH, Tracy RP, Shaten J, Meilahn EN. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case–control study. Multiple Risk Factor Intervention Trial. Am J Epidemiol. 1996;144:537–47.

    CAS  PubMed  Google Scholar 

  86. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol. 2006;26:2745–51.

    CAS  PubMed  Google Scholar 

  87. Ferrucci L, Harris TB, Guralnik JM, et al. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc. 1999;47:639–46.

    CAS  PubMed  Google Scholar 

  88. Weaver JD, Huang MH, Albert M, et al. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59:371–8.

    CAS  PubMed  Google Scholar 

  89. Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106:506–12.

    CAS  PubMed  Google Scholar 

  90. Kiechl S, Egger G, Mayr M, et al. Chronic infections and the risk of carotid atherosclerosis: prospective results from a large population study. Circulation. 2001;103:1064–70.

    CAS  PubMed  Google Scholar 

  91. Patel P, Carrington D, Strachan DP, et al. Fibrinogen: a link between chronic infection and coronary heart disease. Lancet. 1994;343:1634–5.

    CAS  PubMed  Google Scholar 

  92. Fried LP, Kronmal RA, Newman AB, et al. Risk factors for 5-year mortality in older adults: the Cardiovascular Health Study. JAMA. 1998;279:585–92.

    CAS  PubMed  Google Scholar 

  93. Perry RT, Collins JS, Wiener H, et al. The role of TNF and its receptors in Alzheimer’s disease. Neurobiol Aging. 2001;22:873–83.

    CAS  PubMed  Google Scholar 

  94. Lio D, Annoni G, Licastro F, et al. Tumor necrosis factor-α-308A/G polymorphism is associated with age at onset of Alzheimer’s disease. Mech Ageing Dev. 2006;127:567–71.

    CAS  PubMed  Google Scholar 

  95. Bruunsgaard H, Skinhøj P, Pedersen AN, et al. Ageing, tumour necrosis factor-α (TNF-α) and atherosclerosis. Clin Exp Immunol. 2000;121:255–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes. 1994;43:1271–8.

    CAS  PubMed  Google Scholar 

  97. Sairanen T, Carpén O, Karjalainen-Lindsberg ML, et al. Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke. Stroke. 2001;32:1750–8.

    CAS  PubMed  Google Scholar 

  98. Reuben DB, Ix JH, Greendale GA, Seeman TE. The predictive value of combined hypoalbuminemia and hypocholesterolemia in high functioning community-dwelling older persons: MacArthur Studies of Successful Aging. J Am Geriatr Soc. 1999;47:402–26.

    CAS  PubMed  Google Scholar 

  99. Reuben DB, Cheh AL, Harris TB, et al. Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. J Am Geriatr Soc. 2002;50:638–44.

    PubMed  Google Scholar 

  100. Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem. 1999;265:501–23.

    CAS  PubMed  Google Scholar 

  101. Zhang N, Ahsan MH, Purchio AF, West DB. Serum amyloid A-luciferase transgenic mice: response to sepsis, acute arthritis, and contact hypersensitivity and the effects of proteasome inhibition. J Immunol. 2005;174:8125–34.

    CAS  PubMed  Google Scholar 

  102. Mahmoudi M, Curzen N, Gallagher PJ. Atherogenesis: the role of inflammation and infection. Histopathology. 2007;50:535–46.

    CAS  PubMed  Google Scholar 

  103. Blum A, Peleg A, Weinberg M. Anti-cytomegalovirus (CMV) IgG antibody titer in patients with risk factors to atherosclerosis. Clin Exp Med. 2003;3:157–60.

    CAS  PubMed  Google Scholar 

  104. Shen YH, Utama B, Wang J, et al. Human cytomegalovirus causes endothelial injury through the ataxia telangiectasia mutant and p53 DNA damage signaling pathways. Circ Res. 2004;94:1310–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Aiello AE, Haan M, Blythe L, et al. The influence of latent viral infection on rate of cognitive decline over 4 years. J Am Geriatr Soc. 2006;54:1046–54.

    PubMed  Google Scholar 

  106. Peres A, Bauer M, da Cruz IB, et al. Immunophenotyping and T-cell proliferative capacity in a healthy aged population. Biogerontology. 2003;4:289–96.

    CAS  PubMed  Google Scholar 

  107. DelaRosa O, Pawelec G, Peralbo E, et al. Immunological biomarkers of ageing in man: changes in both innate and adaptive immunity are associated with health and longevity. Biogerontology. 2006;7:471–81.

    CAS  PubMed  Google Scholar 

  108. Ferguson FG, Wikby A, Maxson P, et al. Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci. 1995;50:B378–82.

    CAS  PubMed  Google Scholar 

  109. Pawelec G, Akbar A, Caruso C, et al. Human immunosenescence: is it infectious? Immunol Rev. 2005;205:257–68.

    CAS  PubMed  Google Scholar 

  110. Listì F, Candore G, Modica MA, et al. A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann NY Acad Sci. 2006;1089:487–95.

    PubMed  Google Scholar 

  111. Colonna-Romano G, Bulati M, Aquino A, et al. B cell immunosenescence in the elderly and in centenarians. Rejuvenation Res. 2008;11:433–9.

    CAS  PubMed  Google Scholar 

  112. Ogata K, An E, Shioi Y, et al. Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol. 2001;124:392–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Larbi A, Franceschi C, Mazzatti D, et al. Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda). 2008;23:64–74.

    CAS  Google Scholar 

  114. Cevenini E, Invidia L, Lescai F, et al. Human models of aging and longevity. Expert Opin Biol Ther. 2008;8:1393–405.

    CAS  PubMed  Google Scholar 

  115. Vijg J, Campisi J. Puzzles, promises and a cure for ageing. Nature. 2008;454:1065–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Schmitz KH, Schreiner PJ, Jacobs DR, et al. Independent and interactive effects of apolipoprotein E phenotype and cardiorespiratory fitness on plasma lipids. Ann Epidemiol. 2001;11:94–103.

    CAS  PubMed  Google Scholar 

  117. Evans DA, Beckett LA, Field TS, et al. Apolipoprotein E ε4 and incidence of Alzheimer disease in a community population of older persons. JAMA. 1997;277:822–4.

    CAS  PubMed  Google Scholar 

  118. Lunetta KL, D’Agostino Sr RB, Karasik D, et al. Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet. 2007;8 Suppl 1:S13.

    PubMed Central  PubMed  Google Scholar 

  119. Kritchevsky SB, Nicklas BJ, Visser M, et al. Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA. 2005;294:691–8.

    CAS  PubMed  Google Scholar 

  120. Narain Y, Yip A, Murphy T, et al. The ACE gene and Alzheimer’s disease susceptibility. J Med Genet. 2000;37:695–7.

    CAS  PubMed  Google Scholar 

  121. Frederiksen H, Gaist D, Bathum L, et al. Angiotensin I-converting enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival–a follow-up study of elderly Danish twins. Ann Epidemiol. 2003;13:57–65.

    PubMed  Google Scholar 

  122. Bladbjerg EM, Andersen-Ranberg K, de Maat MP, et al. Longevity is independent of common variations in genes associated with cardiovascular risk. Thromb Haemost. 1999;82:1100–5.

    CAS  PubMed  Google Scholar 

  123. Blanché H, Cabanne L, Sahbatou M, Thomas G. A study of French centenarians: are ACE and APOE associated with longevity? C R Acad Sci III. 2001;324:129–35.

    PubMed  Google Scholar 

  124. Reynolds CA, Jansson M, Gatz M, Pedersen NL. Longitudinal change in memory performance associated with HTR2A polymorphism. Neurobiol Aging. 2006;27:150–4.

    CAS  PubMed  Google Scholar 

  125. d’Adda di Fagagna F, Teo SH, Jackson SP. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 2004;18:1781–99.

    PubMed  Google Scholar 

  126. Cherif H, Tarry JL, Ozanne SE, Hales CN. Ageing and telomeres: a study into organ- and gender-specific telomere shortening. Nucleic Acids Res. 2003;31:1576–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.

    Google Scholar 

  128. Bischoff C, Petersen HC, Graakjaer J, et al. No association between telomere length and survival among the elderly and oldest old. Epidemiology. 2006;17:190–4.

    PubMed  Google Scholar 

  129. de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21:532–40.

    PubMed  Google Scholar 

  130. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.

    CAS  PubMed  Google Scholar 

  131. von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med. 2005;5:197–203.

    Google Scholar 

  132. Martin-Ruiz CM, Gussekloo J, van Heemst D, et al. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell. 2005;4:287–90.

    CAS  PubMed  Google Scholar 

  133. Calleja M, Peña P, Ugalde C, et al. Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J Biol Chem. 1993;268:18891–7.

    CAS  PubMed  Google Scholar 

  134. Crawford DR, Wang Y, Schools GP, et al. Down-regulation of mammalian mitochondrial RNAs during oxidative stress. Free Radic Biol Med. 1997;22:551–9.

    CAS  PubMed  Google Scholar 

  135. Johnson SR. Menopause and hormone replacement therapy. Med Clin North Am. 1998;82:297–320.

    CAS  PubMed  Google Scholar 

  136. Chahal HS, Drake WM. The endocrine system and ageing. J Pathol. 2007;211:173–80.

    CAS  PubMed  Google Scholar 

  137. Brochier ML, Arwidson P. Coronary heart disease risk factors in women. Eur Heart J. 1998;19(Suppl A):A45–52.

    PubMed  Google Scholar 

  138. Paganini-Hill A, Corrada MM, Kawas CH. Increased longevity in older users of postmenopausal estrogen therapy: the Leisure World Cohort Study. Menopause. 2006;13:12–8.

    PubMed Central  PubMed  Google Scholar 

  139. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.

    CAS  PubMed  Google Scholar 

  140. Gray A, Feldman HA, McKinlay JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 1991;73:1016–25.

    CAS  PubMed  Google Scholar 

  141. Araujo AB, Kupelian V, Page ST, et al. Sex steroids and all-cause and cause-specific mortality in men. Arch Intern Med. 2007;167:1252–60.

    CAS  PubMed  Google Scholar 

  142. Wang C, Cunningham G, Dobs A, et al. Long-term testosterone gel (AndroGel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. J Clin Endocrinol Metab. 2004;89:2085–98.

    CAS  PubMed  Google Scholar 

  143. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34:513–54.

    PubMed  Google Scholar 

  144. Corpas E, Harman SM, Blackman MR. Human growth hormone and human aging. Endocr Rev. 1993;14:20–39.

    CAS  PubMed  Google Scholar 

  145. Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol. 2000;35:199–212.

    CAS  PubMed  Google Scholar 

  146. Hauck SJ, Bartke A. Free radical defenses in the liver and kidney of human growth hormone transgenic mice: possible mechanisms of early mortality. J Gerontol A Biol Sci Med Sci. 2001;56:B153–62.

    CAS  PubMed  Google Scholar 

  147. Brown-Borg HM. Hormonal regulation of longevity in mammals. Ageing Res Rev. 2007;6:28–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Hoffman AR, Kuntze JE, Baptista J, et al. Growth hormone (GH) replacement therapy in adult-onset GH deficiency: effects on body composition in men and women in a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89:2048–56.

    CAS  PubMed  Google Scholar 

  149. Serri O, St-Jacques P, Sartippour M, Renier G. Alterations of monocyte function in patients with growth hormone (GH) deficiency: effect of substitutive GH therapy. J Clin Endocrinol Metab. 1999;84:58–63.

    CAS  PubMed  Google Scholar 

  150. Yakar S, Setser J, Zhao H, et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J Clin Invest. 2004;113:96–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Tatar M, Kopelman A, Epstein D, et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–10.

    CAS  PubMed  Google Scholar 

  152. Accili D, Drago J, Lee EJ, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996;12:106–9.

    CAS  PubMed  Google Scholar 

  153. Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev. 1996;17:481–517.

    CAS  PubMed  Google Scholar 

  154. Janssen JA, Stolk RP, Pols HA, et al. Serum total IGF-I, free IGF-I, and IGFB-1 levels in an elderly population: relation to cardiovascular risk factors and disease. Arterioscler Thromb Vasc Biol. 1998;18:277–82.

    CAS  PubMed  Google Scholar 

  155. Cappola AR, Xue QL, Ferrucci L, et al. Insulin-like growth factor I and interleukin-6 contribute synergistically to disability and mortality in older women. J Clin Endocrinol Metab. 2003;88:2019–25.

    CAS  PubMed  Google Scholar 

  156. Saydah S, Graubard B, Ballard-Barbash R, Berrigan D. Insulin-like growth factors and subsequent risk of mortality in the United States. Am J Epidemiol. 2007;166:518–26.

    PubMed  Google Scholar 

  157. Henry J. Coronary heart disease and arousal of the adrenal cortical axis. In: Dembroski TM, Schmidt TH, Blumchen G, editors. Biobehavioral bases of coronary heart disease. Basel: Karger; 1983. p. 365–81.

    Google Scholar 

  158. Lupien S, Lecours AR, Lussier I, et al. Basal cortisol levels and cognitive deficits in human aging. J Neurosci. 1994;14:2893–903.

    CAS  PubMed  Google Scholar 

  159. Greendale GA, Unger JB, Rowe JW, Seeman TE. The relation between cortisol excretion and fractures in healthy older people: results from the MacArthur studies-Mac. J Am Geriatr Soc. 1999;47:799–803.

    CAS  PubMed  Google Scholar 

  160. Labrie F, Bélanger A, Simard J, et al. DHEA and peripheral androgen and estrogen formation: intracinology. Ann NY Acad Sci. 1995;774:16–28.

    CAS  PubMed  Google Scholar 

  161. Migeon CJ, Keller AR, Lawrence B, Shepard II TH. Dehydroepiandrosterone and androsterone levels in human plasma: effect of age and sex; day-to-day and diurnal variations. J Clin Endocrinol Metab. 1957;17:1051–62.

    CAS  PubMed  Google Scholar 

  162. Berr C, Lafont S, Debuire B, et al. Relationships of dehydroepiandrosterone sulfate in the elderly with functional, psychological, and mental status, and short-term mortality: a French community-based study. Proc Natl Acad Sci USA. 1996;93:13410–5.

    CAS  PubMed  Google Scholar 

  163. Beer NA, Jakubowicz DJ, Matt DW, et al. Dehydroepiandrosterone reduces plasma plasminogen activator inhibitor type 1 and tissue plasminogen activator antigen in men. Am J Med Sci. 1996;311:205–10.

    CAS  PubMed  Google Scholar 

  164. Feldman HA, Johannes CB, McKinlay JB, Longcope C. Low dehydroepiandrosterone sulfate and heart disease in middle-aged men: cross-sectional results from the Massachusetts Male Aging Study. Ann Epidemiol. 1998;8:217–28.

    CAS  PubMed  Google Scholar 

  165. Cappola AR, Xue QL, Walston JD, et al. DHEAS levels and mortality in disabled older women: the Women’s Health and Aging Study I. J Gerontol A Biol Sci Med Sci. 2006;61:957–62.

    PubMed Central  PubMed  Google Scholar 

  166. Gürlek A, Gedik O. Endogenous sex steroid, GH and IGF-I levels in normal elderly men: relationships with bone mineral density and markers of bone turnover. J Endocrinol Invest. 2001;24:408–14.

    PubMed  Google Scholar 

  167. Svec F, Lopez A. Antiglucocorticoid actions of dehydroepiandrosterone and low concentrations in Alzheimer’s disease. Lancet. 1989;2:1335–6.

    CAS  PubMed  Google Scholar 

  168. Nair KS, Rizza RA, O’Brien P, et al. DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med. 2006;355:1647–59.

    CAS  PubMed  Google Scholar 

  169. Zoico E, Zamboni M, Zamboni V, et al. Leptin physiology and pathophysiology in the elderly. Adv Clin Chem. 2006;41:123–66.

    CAS  Google Scholar 

  170. Schautz B, Later W, Heller M, et al. Impact of age on leptin and adiponectin independent of adiposity. Br J Nutr. 2012;108:363–70.

    CAS  PubMed  Google Scholar 

  171. De Solis AJ, Fernández-Agulló T, Garcia-SanFrutos M, et al. Impairment of skeletal muscle insulin action with aging in Wistar rats: role of leptin and caloric restriction. Mech Ageing Dev. 2012;133:306–16.

    PubMed  Google Scholar 

  172. Arai Y, Takayama M, Abe Y, Hirose N. Adipokines and aging. J Atheroscler Thromb. 2011;18:545–50.

    CAS  PubMed  Google Scholar 

  173. Kmiec Z. Aging and peptide control of food intake. Curr Protein Pept Sci. 2011;12:271–9.

    CAS  PubMed  Google Scholar 

  174. Van Gaal LF, Wauters MA, Mertens IL, et al. Clinical endocrinology of human leptin. Int J Obes Relat Metab Disord. 1999;23 Suppl 1:29–36.

    PubMed  Google Scholar 

  175. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord. 2002;11:1407–33.

    Google Scholar 

  176. Goldstein DS. Plasma catecholamines in clinical studies of cardiovascular diseases. Acta Physiol Scand Suppl. 1984;527:39–41.

    CAS  PubMed  Google Scholar 

  177. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.

    PubMed  Google Scholar 

  178. Boldt J, Menges T, Kuhn D, et al. Alterations in circulating vasoactive substances in the critically ill–a comparison between survivors and non-survivors. Intensive Care Med. 1995;21:218–25.

    CAS  PubMed  Google Scholar 

  179. Semeraro C, Marchini F, Ferlenga P, et al. The role of dopaminergic agonists in congestive heart failure. Clin Exp Hypertens. 1997;19:201–15.

    CAS  PubMed  Google Scholar 

  180. Reuben DB, Talvi SL, Rowe JW, Seeman TE. High urinary catecholamine excretion predicts mortality and functional decline in high-functioning, community-dwelling older persons: MacArthur Studies of Successful Aging. J Gerontol A Biol Sci Med Sci. 2000;55:M618–24.

    CAS  PubMed  Google Scholar 

  181. Arnesen E, Refsum H, Bønaa KH, et al. Serum total homocysteine and coronary heart disease. Int J Epidemiol. 1995;24:704–9.

    CAS  PubMed  Google Scholar 

  182. Verhoef P, Stampfer MJ, Buring JE, et al. Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol. 1996;143:845–59.

    CAS  PubMed  Google Scholar 

  183. Riggs KM, Spiro III A, Tucker K, Rush D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr. 1996;63:306–14.

    CAS  PubMed  Google Scholar 

  184. Jacques PF, Selhub J, Bostom AG, et al. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med. 1999;340:1449–54.

    CAS  PubMed  Google Scholar 

  185. Staessen JA, Fagard R, Thijs L, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997;350:757–64.

    CAS  PubMed  Google Scholar 

  186. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265:3255–64.

    Google Scholar 

  187. Franklin SS, Larson MG, Khan SA, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation. 2001;103:1245–9.

    CAS  PubMed  Google Scholar 

  188. Nichols WW, Nicolini FA, Pepine CJ. Determinants of isolated systolic hypertension in the elderly. J Hypertens Suppl. 1992;10:S73–7.

    CAS  PubMed  Google Scholar 

  189. Benetos A, Safar M, Rudnichi A, et al. Pulse pressure: a predictor of long-term cardiovascular mortality in a French male population. Hypertension. 1997;30:1410–5.

    CAS  PubMed  Google Scholar 

  190. Gillum RF, Makuc DM, Feldman JJ. Pulse rate, coronary heart disease, and death: the NHANES I Epidemiologic Follow-up Study. Am Heart J. 1991;121:172–7.

    CAS  PubMed  Google Scholar 

  191. Seeman TE, Singer BH, Rowe JW, et al. Price of adaptation–allostatic load and its health consequences. MacArthur studies of successful aging. Arch Intern Med. 1997;157:2259–68.

    CAS  PubMed  Google Scholar 

  192. Lapidus L, Bengtsson C, Larsson B, et al. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br Med J. 1984;289:1257–61.

    CAS  Google Scholar 

  193. Folsom AR, Kaye SA, Sellers TA, et al. Body fat distribution and 5-year risk of death in older women. JAMA. 1993;269:483–7.

    CAS  PubMed  Google Scholar 

  194. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet. 1991;337:382–6.

    CAS  PubMed  Google Scholar 

  195. Felson DT, Zhang Y, Anthony JM, et al. Weight loss reduces the risk for symptomatic knee osteoarthritis in women. The Framingham Study. Ann Intern Med. 1992;116:535–9.

    CAS  PubMed  Google Scholar 

  196. Davison KK, Ford ES, Cogswell ME, Dietz WH. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J Am Geriatr Soc. 2002;50:1802–9.

    PubMed  Google Scholar 

  197. Himes C. Obesity, disease, and functional limitation in later life. Demography. 2000;37:73–82.

    CAS  PubMed  Google Scholar 

  198. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28:850–6.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the St. Boniface Hospital Research Foundation for infrastructural support. N.S.N. was a Visiting Professor from the Government Medical College and Guru Nanak Dev Hospital, Amritsar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla PhD, MD (Hon), DSc (Hon) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neki, N.S., Tappia, P.S., Dhalla, N.S. (2014). Biomarkers of Cardiovascular Aging. In: Jugdutt, B. (eds) Aging and Heart Failure. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0268-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0268-2_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0267-5

  • Online ISBN: 978-1-4939-0268-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics