Skip to main content

Solid Electrolytes for Aqueous Lithium Air Batteries

  • Chapter
  • First Online:
The Lithium Air Battery

Abstract

An aqueous lithium air rechargeable battery has a calculated specific energy of 1,910 Wh kg−1, which is an about half to that of a nonaqueous lithium air battery, because water is involved in the electrode reaction. However, the aqueous system has advantage over the nonaqueous system such as the discharge products are soluble in aqueous electrolyte and oxygen diffusion in the electrolyte is much faster than in the nonaqueous electrolyte. Therefore, we could expect to develop a high power density lithium air battery with a high specific energy density. The key component of aqueous lithium air batteries is the water stable lithium ion conducting solid electrolyte, due to the severe reaction of lithium metal with water. In this chapter, two types of lithium ion conducting solid electrolytes of NASICON-type Li1+x Al x Ti2−x (PO4)3 (LATP) and garnet-type Li7La3Zr2O12 (LLZ) were introduced. The electrical conductivities of LATP and LLZ are in the order of 10−4 S cm−1 at room temperature. The electrode performance of the water stable lithium electrode Li/PEO18Li(CF3SO2)2N/LATP in aqueous solution was discussed. As LATP is unstable in contact with lithium metal, polyethylene oxide (PEO)-based lithium conducting polymer electrolyte was used as an interlayer between lithium and LATP, where the polymer electrolyte is stable with lithium, but soluble in water. And a lithium dendrite formation at the lithium/polymer electrolyte interface and the cyclic performance of lithium deposition and stripping in the Li/polymer electrolyte/Li cell were discussed. The cell with PEO18Li(CF3SO2)2N and ionic liquid composite polymer electrolyte interface showed no short-circuit by lithium dendrite formation at 0.3 mA cm−2 for 30 h polarization and 60 °C for 30 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visco SJ, Nimon B (2004) Lithium metal aqueous batteries. International meeting on lithium batteries, abs. # 53.

    Google Scholar 

  2. Aono H et al (1989) Ionic conductivity of the lithium titanium phosphate (Li1+xMxTi2-x, M=Al, Sc, Y and La) systems. J Electrochem Soc 136:590–591

    Article  Google Scholar 

  3. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781

    Article  Google Scholar 

  4. Zhang T et al (2008) Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte. J Electrochem Soc 155:A963–A969

    Article  Google Scholar 

  5. Shimonishi Y et al (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196:5128–5132

    Article  Google Scholar 

  6. Tatsumisago M et al (2002) New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S-P2S5 glasses. Solid State Ion 154–155:635–640

    Article  Google Scholar 

  7. Kamaya N et al (2011) A lithium super conductor. Nat Mater 10:682–686

    Article  Google Scholar 

  8. Aono H et al (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023–1027

    Article  Google Scholar 

  9. Fu J (1997) Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O3. J Power Sources 96:195–200

    Google Scholar 

  10. Shimonishi Y et al (2010) A study on lithium/air secondary batteries—stability of NASICON type glass ceramics in acid solution. J Power Sources 195:6187–6191

    Article  Google Scholar 

  11. Brik P, Salman F, Doring S et al (1999) A first approach to a monolithic all solid state inorganic lithium battery. J Power Sources 119:149–157

    Google Scholar 

  12. Cretin M, Fabry F, Abello L (1995) Study of Li1+xTi2-xAlx(PO4)3 for Li+ potentiometric sensor. J Eur Ceram Soc 15:1149–1156

    Article  Google Scholar 

  13. Thockchom JS, Kumar B (2007) Water durable lithium ion conducting composite membranes from the Li2O-Al2O3-TiO2-P2O5 glass-ceramic. J Electrochem Soc 154:A331–A336

    Article  Google Scholar 

  14. Imanishi N et al (2008) Lithium anode for lithium-air secondary batteries. J Power Sources 185:1392–1397

    Article  Google Scholar 

  15. Hasegawa S et al (2009) Study on lithium-air batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water. J Power Sources 189:371–377

    Article  Google Scholar 

  16. Bohnke O et al (2011) H+/Li+ exchange property of Li3xLa2/3-xTiO3 in water and in humid atmosphere. Solid State Ion 188:144–147

    Article  Google Scholar 

  17. Shimonishi Y et al (2011) Synthesis of garnet-type Li7−xLa3Zr2O12-x/2 and its stability in aqueous solution. Solid State Ion 183:48–53

    Article  Google Scholar 

  18. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206:28–32

    Article  Google Scholar 

  19. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ion conductivity in the garnet-type oxide Li7-xLa3(Zr2-xNbx)O12 (x=0-2). J Power Sources 196:3342–3345

    Article  Google Scholar 

  20. Kotobuki M et al (2010) Conductivity of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J Electrochem Soc 157:A1076–A1079

    Article  Google Scholar 

  21. Ishiguro K et al (2013) Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J Electrochem Soc 160:A1684–A1689

    Article  MathSciNet  Google Scholar 

  22. Geiger CA et al (2011) Crystal chemistry and stability of “Li7La3Zr2O12” garnet. Inorg Chem 50:1089–1097

    Article  Google Scholar 

  23. Jin Y, McGlnn PJ (2011) Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J Power Sources 196:8683–8687

    Article  Google Scholar 

  24. Takahashi K et al (2012) A water-stable high lithium ion conducting Li1.4Ti1.6Al0.4(PO4)3-epoxy resin hybrid sheet. J Electrochem Soc 159:A1065–A1096

    Article  Google Scholar 

  25. Zhang M et al (2013) Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 sheet prepared by tape casting method for lithium-air batteries. J Power Sources 235:117–121

    Article  Google Scholar 

  26. Laurent P et al (2012) Elaboration and characterization of a free standing LiSICON membrane for aqueous lithium-air battery. J Power Sources 214:330–336

    Article  Google Scholar 

  27. Zhang T et al (2011) Stability of Li/polymer electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte. Electrochem Solid State Lett 14:A45–A48

    Article  Google Scholar 

  28. Zhang T et al (2010) A novel high energy density rechargeable lithium/air battery. Chem Commun 46:1661–1663

    Article  Google Scholar 

  29. Megahed S, Scrosati B (1995) Rechargeable nonaqueous batteries. Interface 4:34–37

    Google Scholar 

  30. Liu S et al (2011) Effect of co-doping nano-silica filler and N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. J Power Sources 196:7681–7686

    Article  Google Scholar 

  31. Liu S et al (2010) Lithium dendrite formation in Li/poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide and N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells. J Electrochem Soc 157:A1092–A1098

    Article  Google Scholar 

  32. Liu S et al (2010) Effect of nano-silica in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. J Power Sources 195:6847–6853

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Imanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Imanishi, N. (2014). Solid Electrolytes for Aqueous Lithium Air Batteries. In: Imanishi, N., Luntz, A., Bruce, P. (eds) The Lithium Air Battery. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8062-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8062-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8061-8

  • Online ISBN: 978-1-4899-8062-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics