Skip to main content

Defining the Fate and Function of Effector T cells Through Galectin-1–Galectin-1 Ligand-Binding Interactions: Implications in Tumor Immunity

  • Chapter
  • First Online:
Tumor-Induced Immune Suppression

Abstract

Galectin-1 (Gal-1), a member of an ancient family of animal glycan-binding proteins, has been implicated in a variety of biological events. Interactions between Gal-1 and Gal-1 ligands on T cells are critically involved in regulating the nature and intensity of T-cell-mediated inflammation and antitumor immunity. Appropriately glycosylated T-cell-membrane glycoconjugates operationally defined as Gal-1 ligands bind Gal-1 and elicit downstream cellular activities that dampen effector T-cell function. Together, these biological constituents represent promising targets in the development of novel anti-inflammatory and antitumor immune therapies. Whether through characteristic elevations in tumor-derived Gal-1 or an imbalance in regulatory and Gal-1 ligand+ effector T-cell subsets during inflammation, the Gal-1–Gal-1 ligand-binding axis offers numerous cellular/tissue contexts to strategically interfere with Gal-1 efficacy. In this chapter, we will examine recent assessments of (1) Gal-1 expression and function in controlling both adaptive and antitumor T-cell immunity, (2) identity and function of T-cell Gal-1 ligands, and (3) targeting of the Gal-1–Gal-1 ligand axis to regulate inflammation or boost antitumor immune responses. These research disciplines collectively highlight the importance of understanding the identity and functional nature of Gal-1 and its ligands to strategically and safely manipulate the immune system to control immunopathologic conditions.

This work was supported in part by the National Institutes of Health/National Center for Complementary and Alternative Medicine grant, RO1 AT004268 (C. Dimitroff), National Institutes of Health/National Cancer Institute, RO1 CA 173610 (C. Dimitroff), and grants from Agencia Nacional de Promoción Científica y Tecnológica (Argentina), Fundación Sales (Argentina), and The National Multiple Sclerosis Society (USA) (G.A. Rabinovich).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J Biol Chem 270(10):5207–5212

    CAS  PubMed  Google Scholar 

  2. Lee RT, Ichikawa Y, Allen HJ, Lee YC (1990) Binding characteristics of galactoside-binding lectin (galaptin) from human spleen. J Biol Chem 265(14):7864–7871

    CAS  PubMed  Google Scholar 

  3. Perillo NL, Marcus ME, Baum LG (1998) Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med 76(6):402–412

    CAS  PubMed  Google Scholar 

  4. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16(11):137R–157R. doi:10.1093/glycob/cwl025

    CAS  PubMed  Google Scholar 

  5. Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6(8):607–614

    CAS  PubMed  Google Scholar 

  6. Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17

    PubMed  Google Scholar 

  7. Amano M, Galvan M, He J, Baum LG (2003) The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem 278(9):7469–7475. doi:10.1074/jbc.M209595200

    CAS  PubMed  Google Scholar 

  8. Earl LA, Baum LG (2008) CD45 glycosylation controls T-cell life and death. Immunol Cell Biol 86(7):608–615

    CAS  PubMed  Google Scholar 

  9. Fulcher JA, Chang MH, Wang S, Almazan T, Hashimi ST, Eriksson AU, Wen X, Pang M, Baum LG, Singh RR, Lee B (2009) Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling. J Biol Chem 284(39):26860–26870. doi:10.1074/jbc.M109.037507

    CAS  PubMed  Google Scholar 

  10. Hernandez JD, Nguyen JT, He J, Wang W, Ardman B, Green JM, Fukuda M, Baum LG (2006) Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J Immunol 177(8):5328–5336

    CAS  PubMed  Google Scholar 

  11. Nguyen JT, Evans DP, Galvan M, Pace KE, Leitenberg D, Bui TN, Baum LG (2001) CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J Immunol 167(10):5697–5707

    CAS  PubMed  Google Scholar 

  12. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ, Ouyang J, Ilarregui JM, Toscano MA, Domaica CI, Croci MC, Shipp MA, Mesri EA, Albini A, Rabinovich GA (2012) Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 209(11):1985–2000. doi:10.1084/jem.20111665

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD, Zwirner NW, Poirier F, Riley EM, Baum LG, Rabinovich GA (2007) Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8(8):825–834. doi:10.1038/ni1482

    CAS  PubMed  Google Scholar 

  14. Grigorian A, Torossian S, Demetriou M (2009) T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev 230(1):232–246. doi:10.1111/j.1600-065X.2009.00796.x

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Leppanen A, Stowell S, Blixt O, Cummings RD (2005) Dimeric galectin-1 binds with high affinity to alpha2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280(7):5549–5562. doi:10.1074/jbc.M412019200

    PubMed  Google Scholar 

  16. Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD (2009) Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol 16(1):36–47. doi:10.1016/j.chembiol.2008.11.004

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. doi:10.1074/jbc.M709545200

    CAS  PubMed  Google Scholar 

  18. Barthel SR, Antonopoulos A, Cedeno-Laurent F, Schaffer L, Hernandez G, Patil SA, North SJ, Dell A, Matta KL, Neelamegham S, Haslam SM, Dimitroff CJ (2011) Peracetylated 4-fluoro-glucosamine reduces the content and repertoire of N- and O-glycans without direct incorporation. J Biol Chem 286(24):21717–21731. doi:10.1074/jbc.M110.194597

    CAS  PubMed  Google Scholar 

  19. Cho M, Cummings RD (1996) Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis. Biochemistry 35(40):13081–13088. doi:10.1021/bi961181d

    CAS  PubMed  Google Scholar 

  20. Earl LA, Bi S, Baum LG (2011) Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 21(1):6–12. doi:10.1093/glycob/cwq144

    CAS  PubMed  Google Scholar 

  21. Fuertes MB, Molinero LL, Toscano MA, Ilarregui JM, Rubinstein N, Fainboim L, Zwirner NW, Rabinovich GA (2004) Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol Cell Biochem 267(1–2):177–185

    CAS  PubMed  Google Scholar 

  22. Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, Rabinovich GA (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10(9):981–991. doi:10.1038/ni.1772

    CAS  PubMed  Google Scholar 

  23. Rabinovich GA, Iglesias MM, Modesti NM, Castagna LF, Wolfenstein-Todel C, Riera CM, Sotomayor CE (1998) Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J Immunol 160(10):4831–4840

    CAS  PubMed  Google Scholar 

  24. Rabinovich GA, Toscano MA (2009) Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9(5):338–352

    CAS  PubMed  Google Scholar 

  25. Zuniga E, Rabinovich GA, Iglesias MM, Gruppi A (2001) Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukocyte Biol 70(1):73–79

    CAS  PubMed  Google Scholar 

  26. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, Chen W, Kutok JL, Rabinovich GA, Shipp MA (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 104(32):13134–13139. doi:10.1073/pnas.0706017104

    CAS  PubMed  Google Scholar 

  27. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ, Strominger JL (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198(8):1201–1212. doi:10.1084/jem.20030305

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kopcow HD, Rosetti F, Leung Y, Allan DS, Kutok JL, Strominger JL (2008) T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc Natl Acad Sci USA 105(47):18472–18477. doi:10.1073/pnas.0809233105

    CAS  PubMed  Google Scholar 

  29. Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R, Wright L, Robinson LR, Aspericueta V, Panico M, Haslam SM, Morris HR, Dell A, Lee B, Baum LG (2010) Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLoS Pathog 6(7):e1000993. doi:10.1371/journal.ppat.1000993

    PubMed Central  PubMed  Google Scholar 

  30. Ito K, Scott SA, Cutler S, Dong LF, Neuzil J, Blanchard H, Ralph SJ (2011) Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. Angiogenesis 14(3):293–307. doi:10.1007/s10456-011-9213-5

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Mathieu V, de Lassalle EM, Toelen J, Mohr T, Bellahcene A, Van Goietsenoven G, Verschuere T, Bouzin C, Debyser Z, De Vleeschouwer S, Van Gool S, Poirier F, Castronovo V, Kiss R, Feron O (2012) Galectin-1 in melanoma biology and related neo-angiogenesis processes. J Invest Dermatol 132(9):2245–2254. doi:10.1038/jid.2012.142

    CAS  PubMed  Google Scholar 

  32. Thijssen VL, Hulsmans S, Griffioen AW (2008) The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. Am J Pathol 172(2):545–553. doi:10.2353/ajpath.2008.070938

    CAS  PubMed  Google Scholar 

  33. Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J, Mayo KH, Poirier F, Griffioen AW (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 103(43):15975–15980. doi:10.1073/pnas.0603883103

    CAS  PubMed  Google Scholar 

  34. Rabinovich G, Castagna L, Landa C, Riera CM, Sotomayor C (1996) Regulated expression of a 16-kd galectin-like protein in activated rat macrophages. J Leukocyte Biol 59(3):363–370

    CAS  PubMed  Google Scholar 

  35. Cedeno-Laurent F, Watanabe R, Teague JE, Kupper TS, Clark RA, Dimitroff CJ (2012) Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma. Blood 119(15):3534–3538. doi:10.1182/blood-2011-12-396457

    CAS  PubMed  Google Scholar 

  36. Laderach DJ, Gentilini L, Giribaldi L, Cardenas Delgado V, Nugnes L, Croci DO, Al Nakouzi N, Sacca P, Casas G, Mazza O, Shipp MA, Vazquez ES, Chauchereau A, Kutok JL, Rodig SJ, Elola MT, Compagno D, Rabinovich GA (2012) A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease. Cancer Res 73(1):86–96. doi:10.1158/0008-5472.CAN-12-1260

    PubMed  Google Scholar 

  37. Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, Mordoh J, Fainboim L, Podhajcer OL, Rabinovich GA (2004) Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 5(3):241–251

    CAS  PubMed  Google Scholar 

  38. Juszczynski P, Rodig SJ, Ouyang J, O’Donnell E, Takeyama K, Mlynarski W, Mycko K, Szczepanski T, Gaworczyk A, Krivtsov A, Faber J, Sinha AU, Rabinovich GA, Armstrong SA, Kutok JL, Shipp MA (2010) MLL-rearranged B lymphoblastic leukemias selectively express the immunoregulatory carbohydrate-binding protein galectin-1. Clin Cancer Res 16(7):2122–2130. doi:10.1158/1078-0432.CCR-09-2765

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Rodig SJ, Ouyang J, Juszczynski P, Currie T, Law K, Neuberg DS, Rabinovich GA, Shipp MA, Kutok JL (2008) AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Clin Cancer Res 14(11):3338–3344. doi:10.1158/1078-0432.CCR-07-4709

    CAS  PubMed  Google Scholar 

  40. Ouyang J, Juszczynski P, Rodig SJ, Green MR, O’Donnell E, Currie T, Armant M, Takeyama K, Monti S, Rabinovich GA, Ritz J, Kutok JL, Shipp MA (2011) Viral induction and targeted inhibition of galectin-1 in EBV + posttransplant lymphoproliferative disorders. Blood 117(16):4315–4322. doi:10.1182/blood-2010-11-320481

    CAS  PubMed  Google Scholar 

  41. Cedeno-Laurent F, Opperman MJ, Barthel SR, Hays D, Schatton T, Zhan Q, He X, Matta KL, Supko JG, Frank MH, Murphy GF, Dimitroff CJ (2012) Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity. J Invest Dermatol 132(2):410–420. doi:10.1038/jid.2011.335

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Demydenko D, Berest I (2009) Expression of galectin-1 in malignant tumors. Exp Oncol 31 (2):74–79

    CAS  PubMed  Google Scholar 

  43. Jung EJ, Moon HG, Cho BI, Jeong CY, Joo YT, Lee YJ, Hong SC, Choi SK, Ha WS, Kim JW, Lee CW, Lee JS, Park ST (2007) Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer 120(11):2331–2338. doi:10.1002/ijc.22434

    CAS  PubMed  Google Scholar 

  44. Kim HJ, Jeon HK, Cho YJ, Park YA, Choi JJ, Do IG, Song SY, Lee YY, Choi CH, Kim TJ, Bae DS, Lee JW, Kim BG (2012) High galectin-1 expression correlates with poor prognosis and is involved in epithelial ovarian cancer proliferation and invasion. Eur J Cancer 48(12):1914–1921. doi:10.1016/j.ejca.2012.02.005

    CAS  PubMed  Google Scholar 

  45. Jung TY, Jung S, Ryu HH, Jeong YI, Jin YH, Jin SG, Kim IY, Kang SS, Kim HS (2008) Role of galectin-1 in migration and invasion of human glioblastoma multiforme cell lines. J Neurosurg 109(2):273–284. doi:10.3171/JNS/2008/109/8/0273

    CAS  PubMed  Google Scholar 

  46. Lefranc F, Mathieu V, Kiss R (2011) Galectin-1 as an oncotarget in gliomas and melanomas. Oncotarget 2(12):892–893

    PubMed  Google Scholar 

  47. Rorive S, Belot N, Decaestecker C, Lefranc F, Gordower L, Micik S, Maurage CA, Kaltner H, Ruchoux MM, Danguy A, Gabius HJ, Salmon I, Kiss R, Camby I (2001) Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia 33(3):241–255

    CAS  PubMed  Google Scholar 

  48. Toussaint LG, 3rd, Nilson AE, Goble JM, Ballman KV, James CD, Lefranc F, Kiss R, Uhm JH (2012) Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion. Mol Cancer 11:32. doi:10.1186/1476-4598-11-32

    PubMed Central  PubMed  Google Scholar 

  49. Yamaoka K, Mishima K, Nagashima Y, Asai A, Sanai Y, Kirino T (2000) Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J Neurosci Res 59(6):722–730

    CAS  PubMed  Google Scholar 

  50. Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS, Cordo-Russo R, Toscano MA, Bianco GA, Kobelt P, Handjiski B, Tirado I, Markert UR, Klapp BF, Poirier F, Szekeres-Bartho J, Rabinovich GA, Arck PC (2007) A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 13(12):1450–1457. doi:10.1038/nm1680

    CAS  PubMed  Google Scholar 

  51. Zacarias Fluck MF, Hess L, Salatino M, Croci DO, Stupirski JC, Di Masso RJ, Roggero E, Rabinovich GA, Scharovsky OG (2012) The aggressiveness of murine lymphomas selected in vivo by growth rate correlates with galectin-1 expression and response to cyclophosphamide. Cancer Immunol Immun 61(4):469–480. doi:10.1007/s00262-011-1114-3

    CAS  Google Scholar 

  52. Jeschke U, Toth B, Scholz C, Friese K, Makrigiannakis A (2010) Glycoprotein and carbohydrate binding protein expression in the placenta in early pregnancy loss. J Reprod Immunol 85(1):99–105. doi:10.1016/j.jri.2009.10.012

    CAS  PubMed  Google Scholar 

  53. Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S, Mendez Huergo SP, Stupirski JC, Mazal D, Osinaga E, Toscano MA, Sundblad V, Rabinovich GA, Salatino M (2012) Targeting galectin-1 overcomes breast cancer associated immunosuppression and prevents metastatic disease. Cancer Res 73(3):1107–1117. doi:10.1158/0008-5472.CAN-12-2418

    PubMed  Google Scholar 

  54. Dimitroff CJ, Sharma A, Bernacki RJ (1998) Cancer metastasis: a search for therapeutic inhibition. Cancer Invest 16(4):279–290

    CAS  PubMed  Google Scholar 

  55. Skrincosky DM, Allen HJ, Bernacki RJ (1993) Galaptin-mediated adhesion of human ovarian carcinoma A121 cells and detection of cellular galaptin-binding glycoproteins. Cancer Res 53(11):2667–2675

    CAS  PubMed  Google Scholar 

  56. Woynarowska B, Skrincosky DM, Haag A, Sharma M, Matta K, Bernacki RJ (1994) Inhibition of lectin-mediated ovarian tumor cell adhesion by sugar analogs. J Biol Chem 269(36):22797–22803

    CAS  PubMed  Google Scholar 

  57. Liu FT, Rabinovich GA (2010) Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci 1183:158–182

    CAS  PubMed  Google Scholar 

  58. Rabinovich GA, Baum LG, Tinari N, Paganelli R, Natoli C, Liu FT, Iacobelli S (2002) Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 23(6):313–320

    CAS  PubMed  Google Scholar 

  59. Rabinovich GA, Croci DO (2012) Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 36(3):322–335

    CAS  PubMed  Google Scholar 

  60. Baum LG, Blackall DP, Arias-Magallano S, Nanigian D, Uh SY, Browne JM, Hoffmann D, Emmanouilides CE, Territo MC, Baldwin GC (2003) Amelioration of graft versus host disease by galectin-1. Clin Immunol 109(3):295–307

    CAS  PubMed  Google Scholar 

  61. Liu SD, Whiting CC, Tomassian T, Pang M, Bissel SJ, Baum LG, Mossine VV, Poirier F, Huflejt ME, Miceli MC (2008) Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes. Blood 112(1):120–130. doi:10.1182/blood-2007-09-114181

    CAS  PubMed  Google Scholar 

  62. Motran CC, Molinder KM, Liu SD, Poirier F, Miceli MC (2008) Galectin-1 functions as a Th2 cytokine that selectively induces Th1 apoptosis and promotes Th2 function. European J Immunol 38(11):3015–3027. doi:10.1002/eji.200838295

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Vespa GN, Lewis LA, Kozak KR, Moran M, Nguyen JT, Baum LG, Miceli MC (1999) Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J Immunol 162(2):799–806

    CAS  PubMed  Google Scholar 

  64. Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, Hackeng TM, Kiss R, Kloog Y, Poirier F, Griffioen AW (2010) Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res 70(15):6216–6224. doi:10.1158/0008-5472.CAN-09-4150

    CAS  PubMed  Google Scholar 

  65. Salatino M, Croci DO, Bianco GA, Ilarregui JM, Toscano MA, Rabinovich GA (2008) Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opin Biol Ther 8(1):45–57. doi:10.1517/14712598.8.1.45

    CAS  PubMed  Google Scholar 

  66. Rabinovich GA, Ilarregui JM (2009) Conveying glycan information into T-cell homeostatic programs: a challenging role for galectin-1 in inflammatory and tumor microenvironments. Immunol Rev 230(1):144–159. doi:10.1111/j.1600-065X.2009.00787.x

    CAS  PubMed  Google Scholar 

  67. Rabinovich GA, Vidal M (2012) Galectins and microenvironmental niches during hematopoiesis. Curr Opin Hematol 18(6):443–451

    Google Scholar 

  68. Ramhorst RE, Giribaldi L, Fraccaroli L, Toscano MA, Stupirski JC, Romero MD, Durand ES, Rubinstein N, Blaschitz A, Sedlmayr P, Genti-Raimondi S, Fainboim L, Rabinovich GA (2012) Galectin-1 confers immune privilege to human trophoblast: implications in recurrent fetal loss. Glycobiology 22(10):1374–1386. doi:10.1093/glycob/cws104

    CAS  PubMed  Google Scholar 

  69. von Gunten S, Smith DF, Cummings RD, Riedel S, Miescher S, Schaub A, Hamilton RG, Bochner BS (2009) Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J Allergy Clin Immun 123(6):1268–1276.e15

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Cedeno-Laurent F, Barthel SR, Opperman MJ, Lee DM, Clark RA, Dimitroff CJ (2010) Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J Immunol 185(8):4659–4672. doi:10.4049/jimmunol.1000715

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4 + CD25 + T cells. Blood 109(5):2058–2065. doi:10.1182/blood-2006-04-016451

    CAS  PubMed  Google Scholar 

  72. Tsai CM, Chiu YK, Hsu TL, Lin IY, Hsieh SL, Lin KI (2008) Galectin-1 promotes immunoglobulin production during plasma cell differentiation. J Immunol 181(7):4570–4579

    CAS  PubMed  Google Scholar 

  73. Cedeno-Laurent F, Opperman M, Barthel SR, Kuchroo VK, Dimitroff CJ (2012) Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J Immunol 188(7):3127–3137. doi:10.4049/jimmunol.1103433

    CAS  PubMed Central  PubMed  Google Scholar 

  74. van der Leij J, van den Berg A, Blokzijl T, Harms G, van Goor H, Zwiers P, van Weeghel R, Poppema S, Visser L (2004) Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J Pathol 204(5):511–518. doi:10.1002/path.1671

    Google Scholar 

  75. van der Leij J, van den Berg A, Harms G, Eschbach H, Vos H, Zwiers P, van Weeghel R, Groen H, Poppema S, Visser L (2007) Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol Immunol 44(4):506–513. doi:10.1016/j.molimm.2006.02.011

    Google Scholar 

  76. Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem 270(10):5198–5206

    CAS  PubMed  Google Scholar 

  77. Stowell SR, Karmakar S, Arthur CM, Ju T, Rodrigues LC, Riul TB, Dias-Baruffi M, Miner J, McEver RP, Cummings RD (2009) Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20(5):1408–1418. doi:10.1091/mbc.E08-07-0786

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999. doi:10.1074/jbc.M808925200

    CAS  PubMed  Google Scholar 

  79. Tsai CM, Guan CH, Hsieh HW, Hsu TL, Tu Z, Wu KJ, Lin CH, Lin KI (2011) Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. J Immunol 187(4):1643–1652. doi:10.4049/jimmunol.1100297

    CAS  PubMed  Google Scholar 

  80. Dias-Baruffi M, Zhu H, Cho M, Karmakar S, McEver RP, Cummings RD (2003) Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem 278(42):41282–41293. doi:10.1074/jbc.M306624200

    CAS  PubMed  Google Scholar 

  81. Karmakar S, Cummings RD, McEver RP (2005) Contributions of Ca2 + to galectin-1-induced exposure of phosphatidylserine on activated neutrophils. J Biol Chem 280(31):28623–28631. doi:10.1074/jbc.M414140200

    CAS  PubMed  Google Scholar 

  82. Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778. doi:10.1093/glycob/cwn066

    CAS  PubMed  Google Scholar 

  83. Cedeno-Laurent F, Dimitroff CJ (2012) Galectins and their ligands: negative regulators of anti-tumor immunity. Glycoconj J 29(8–9):619–625

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Cedeno-Laurent F, Dimitroff CJ (2012) Galectin-1 research in T cell immunity: past, present and future. Clin Immunol 142(2):107–116. doi:10.1016/j.clim.2011.09.011

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Earl LA, Bi S, Baum LG (2010) N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem 285(4):2232–2244. doi:10.1074/jbc.M109.066191

    CAS  PubMed  Google Scholar 

  86. Pace KE, Lee C, Stewart PL, Baum LG (1999) Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 163(7):3801–3811

    CAS  PubMed  Google Scholar 

  87. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378(6558):736–739. doi:10.1038/378736a0

    CAS  PubMed  Google Scholar 

  88. Roberts AA, Amano M, Felten C, Galvan M, Sulur G, Pinter-Brown L, Dobbeling U, Burg G, Said J, Baum LG (2003) Galectin-1-mediated apoptosis in mycosis fungoides: the roles of CD7 and cell surface glycosylation. Mod Pathol 16(6):543–551. doi:10.1097/01.MP.0000071840.84469.06

    PubMed  Google Scholar 

  89. Pang M, He J, Johnson P, Baum LG (2009) CD45-mediated fodrin cleavage during galectin-1 T cell death promotes phagocytic clearance of dying cells. J Immunol 182(11):7001–7008. doi:10.4049/jimmunol.0804329

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG (2000) CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J Immunol 165(5):2331–2334

    CAS  PubMed  Google Scholar 

  91. Walzel H, Blach M, Hirabayashi J, Kasai KI, Brock J (2000) Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology 10(2):131–140

    CAS  PubMed  Google Scholar 

  92. Blaser C, Kaufmann M, Muller C, Zimmermann C, Wells V, Mallucci L, Pircher H (1998) Beta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28(8):2311–2319

    CAS  Google Scholar 

  93. Gandhi MK, Moll G, Smith C, Dua U, Lambley E, Ramuz O, Gill D, Marlton P, Seymour JF, Khanna R (2007) Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 110(4):1326–1329. doi:10.1182/blood-2007-01-066100

    CAS  PubMed  Google Scholar 

  94. Lanteri M, Giordanengo V, Hiraoka N, Fuzibet JG, Auberger P, Fukuda M, Baum LG, Lefebvre JC (2003) Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology 13(12):909–918. doi:10.1093/glycob/cwg110

    CAS  PubMed  Google Scholar 

  95. Liu SD, Tomassian T, Bruhn KW, Miller JF, Poirier F, Miceli MC (2009) Galectin-1 tunes TCR binding and signal transduction to regulate CD8 burst size. J Immunol 182(9):5283–5295. doi:10.4049/jimmunol.0803811

    CAS  PubMed  Google Scholar 

  96. Ito K, Ralph SJ (2012) Inhibiting galectin-1 reduces murine lung metastasis with increased CD4( + ) and CD8 ( + ) T cells and reduced cancer cell adherence. Clin Exp Metastasis 29(6):561–572. doi:10.1007/s10585-012-9471-7

    CAS  PubMed  Google Scholar 

  97. Chen IJ, Chen HL, Demetriou M (2007) Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J Biol Chem 282(48):35361–35372. doi:10.1074/jbc.M706923200

    CAS  PubMed  Google Scholar 

  98. Carlow DA, Williams MJ, Ziltener HJ (2003) Modulation of O-glycans and N-glycans on murine CD8 T cells fails to alter annexin V ligand induction by galectin 1. J Immunol 171(10):5100–5106

    CAS  PubMed  Google Scholar 

  99. Comelli EM, Sutton-Smith M, Yan Q, Amado M, Panico M, Gilmartin T, Whisenant T, Lanigan CM, Head SR, Goldberg D, Morris HR, Dell A, Paulson JC (2006) Activation of murine CD4 + and CD8 + T lymphocytes leads to dramatic remodeling of N-linked glycans. J Immunol 177(4):2431–2440

    CAS  PubMed  Google Scholar 

  100. Antonopoulos A, Demotte N, Stroobant V, Haslam SM, van der Bruggen P, Dell A (2012) Loss of effector function of human cytolytic T lymphocytes is accompanied by major alterations in N- and O-glycosylation. J Biol Chem 287(14):11240–11251. doi:10.1074/jbc.M111.320820

    CAS  PubMed  Google Scholar 

  101. Leppanen A, Cummings RD (2010) Fluorescence-based solid-phase assays to study glycan-binding protein interactions with glycoconjugates. Methods Enzymol 478:241–264. doi:10.1016/S0076-6879(10)78012-5

    CAS  PubMed  Google Scholar 

  102. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409(6821):733–739. doi:10.1038/35055582

    CAS  PubMed  Google Scholar 

  103. Chen HL, Li CF, Grigorian A, Tian W, Demetriou M (2009) T cell receptor signaling co-regulates multiple Golgi genes to enhance N-glycan branching. J Biol Chem 284(47):32454–32461. doi:10.1074/jbc.M109.023630

    CAS  PubMed  Google Scholar 

  104. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134

    CAS  PubMed  Google Scholar 

  105. Knibbs RN, Craig RA, Natsuka S, Chang A, Cameron M, Lowe JB, Stoolman LM (1996) The fucosyltransferase FucT-VII regulates E-selectin ligand synthesis in human T cells. J Cell Biol 133(4):911–920

    CAS  PubMed  Google Scholar 

  106. Fuhlbrigge RC, Kieffer JD, Armerding D, Kupper TS (1997) Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389(6654):978–981. doi:10.1038/40166

    CAS  PubMed  Google Scholar 

  107. Wagers AJ, Kansas GS (2000) Potent induction of alpha(1,3)-fucosyltransferase VII in activated CD4 + T cells by TGF-beta 1 through a p38 mitogen-activated protein kinase-dependent pathway. J Immunol 165(9):5011–5016

    CAS  PubMed  Google Scholar 

  108. Weninger W, Ulfman LH, Cheng G, Souchkova N, Quackenbush EJ, Lowe JB, von Andrian UH (2000) Specialized contributions by alpha(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12(6):665–676

    CAS  PubMed  Google Scholar 

  109. Erdmann I, Scheidegger EP, Koch FK, Heinzerling L, Odermatt B, Burg G, Lowe JB, Kundig TM (2002) Fucosyltransferase VII-deficient mice with defective E-, P-, and L-selectin ligands show impaired CD4 + and CD8 + T cell migration into the skin, but normal extravasation into visceral organs. J Immunol 168(5):2139–2146

    CAS  PubMed  Google Scholar 

  110. Dimitroff CJ, Kupper TS, Sackstein R (2003) Prevention of leukocyte migration to inflamed skin with a novel fluorosugar modifier of cutaneous lymphocyte-associated antigen. J Clin Invest 112(7):1008–1018. doi:10.1172/JCI19220

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Stannard KA, Collins PM, Ito K, Sullivan EM, Scott SA, Gabutero E, Darren Grice I, Low P, Nilsson UJ, Leffler H, Blanchard H, Ralph SJ (2010) Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Lett 299(2):95–110. doi:10.1016/j.canlet.2010.08.005

    CAS  PubMed  Google Scholar 

  112. Bernacki R, Porter C, Korytnyk W, Mihich E (1977) Plasma membrane as a site for chemotherapeutic intervention. Adv Enzyme Regul 16:217–237

    CAS  PubMed  Google Scholar 

  113. Bernacki RJ, Sharma M, Porter NK, Rustum Y, Paul B, Korythyk W (1977) Biochemical characteristics, metabolism, and antitumor activity of several acetylated hexosamines. J Supramol Struct 7(2):235–250. doi:10.1002/jss.400070208

    CAS  PubMed  Google Scholar 

  114. Woynarowska B, Dimitroff CJ, Sharma M, Matta KL, Bernacki RJ (1996) Inhibition of human HT-29 colon carcinoma cell adhesion by a 4-fluoro-glucosamine analogue. Glycoconj J 13(4):663–674

    CAS  PubMed  Google Scholar 

  115. Descheny L, Gainers ME, Walcheck B, Dimitroff CJ (2006) Ameliorating skin-homing receptors on malignant T cells with a fluorosugar analog of N-acetylglucosamine: P-selectin ligand is a more sensitive target than E-selectin ligand. J Invest Dermatol 126(9):2065–2073

    CAS  PubMed  Google Scholar 

  116. Dimitroff CJ, Bernacki RJ, Sackstein R (2003) Glycosylation-dependent inhibition of cutaneous lymphocyte-associated antigen expression: implications in modulating lymphocyte migration to skin. Blood 101(2):602–610

    CAS  PubMed  Google Scholar 

  117. Gainers ME, Descheny L, Barthel SR, Liu L, Wurbel MA, Dimitroff CJ (2007) Skin-homing receptors on effector leukocytes are differentially sensitive to glyco-metabolic antagonism in allergic contact dermatitis. J Immunol 179(12):8509–8518

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Dimitroff CJ (2012) Leveraging fluorinated glucosamine action to boost antitumor immunity. Curr Opin Immunol 25(2):206–213. doi:10.1016/j.coi.2012.11.003

    PubMed  Google Scholar 

  119. Dings RP, van der Schaft DW, Hargittai B, Haseman J, Griffioen AW, Mayo KH (2003) Anti-tumor activity of the novel angiogenesis inhibitor anginex. Cancer Lett 194(1):55–66

    CAS  PubMed  Google Scholar 

  120. Griffioen AW, van der Schaft DW, Barendsz-Janson AF, Cox A, Struijker Boudier HA, Hillen HF, Mayo KH (2001) Anginex, a designed peptide that inhibits angiogenesis. Biochem J 354(Pt 2):233–242

    CAS  PubMed  Google Scholar 

  121. Mayo KH, van der Schaft DW, Griffioen AW (2001) Designed beta-sheet peptides that inhibit proliferation and induce apoptosis in endothelial cells. Angiogenesis 4(1):45–51

    CAS  PubMed  Google Scholar 

  122. Salomonsson E, Thijssen VL, Griffioen AW, Nilsson UJ, Leffler H (2011) The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins. J Biol Chem 286(16):13801–13804. doi:10.1074/jbc.C111.229096

    CAS  PubMed  Google Scholar 

  123. Perone MJ, Bertera S, Shufesky WJ, Divito SJ, Montecalvo A, Mathers AR, Larregina AT, Pang M, Seth N, Wucherpfennig KW, Trucco M, Baum LG, Morelli AE (2009) Suppression of autoimmune diabetes by soluble galectin-1. J Immunol 182(5):2641–2653. doi:10.4049/jimmunol.0800839

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Rabinovich GA, Daly G, Dreja H, Tailor H, Riera CM, Hirabayashi J, Chernajovsky Y (1999) Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 190(3):385–398

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Santucci L, Fiorucci S, Cammilleri F, Servillo G, Federici B, Morelli A (2000) Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 31(2):399–406. doi:10.1002/hep.510310220

    CAS  PubMed  Google Scholar 

  126. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, Federici B, Rabinovich GA, Morelli A (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124(5):1381–1394

    CAS  PubMed  Google Scholar 

  127. Toscano MA, Commodaro AG, Ilarregui JM, Bianco GA, Liberman A, Serra HM, Hirabayashi J, Rizzo LV, Rabinovich GA (2006) Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 176(10):6323–6332

    CAS  PubMed  Google Scholar 

  128. Garrison L, McDonnell ND (1999) Etanercept: therapeutic use in patients with rheumatoid arthritis. Ann Rheum Dis 58(Suppl 1):I65–I69

    Google Scholar 

  129. Mikuls TR, Moreland LW (2001) TNF blockade in the treatment of rheumatoid arthritis: infliximab versus etanercept. Expert Opin Pharmacother 2(1):75–84. doi:10.1517/14656566.2.1.75

    CAS  PubMed  Google Scholar 

  130. El-Charabaty E, Geara AS, Ting C, El-Sayegh S, Azzi J (2012) Belatacept: a new era of immunosuppression? Expert Rev Clin Immunol 8(6):527–536. doi:10.1586/eci.12.42

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Authors do not report any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. Rabinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dimitroff, C., Rabinovich, G. (2014). Defining the Fate and Function of Effector T cells Through Galectin-1–Galectin-1 Ligand-Binding Interactions: Implications in Tumor Immunity. In: Gabrilovich, D., Hurwitz, A. (eds) Tumor-Induced Immune Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8056-4_12

Download citation

Publish with us

Policies and ethics