Skip to main content

Syndactyly

  • Chapter
  • First Online:
Congenital Anomalies of the Upper Extremity

Abstract

Syndactyly is a condition well known to the pediatric surgeon due to it being the second most common congenital upper limb defect. Ranging from simple interdigital webbing, syndactyly is frequently seen in association with soft tissue and bone variances in the hand as well as in syndromes associated with abnormalities of the other organ systems. Coming from the Greek syn (“συν” meaning together) and dactyly (“δακτυλος” meaning digits) it describes an embryological failure of finger separation. Although common in some species, including birds and kangaroos, it has a major aesthetic and functional significance for humans born with the condition.

This chapter focuses on the current understanding of the genetic and molecular causes of syndactyly. It will also discuss the varying clinical presentations as well as highlighting its management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canale ST, Beaty JH. Campbell’s operative orthopaedics, vol. 4. 11th ed. Philadelphia, PA: Mosby Elsevier; 2008. p. 4403–4.

    Google Scholar 

  2. Green DP, Hotchkiss RN, Pederson WC, Wolfe SW. Green’s Operative Hand Surgery, vol. 2. 5th ed. Philadelphia, PA: Mosby Elsevier; 2005. p. 1381–2.

    Google Scholar 

  3. Burke FD, McGrouther DA, Smith PJ. Principles of hand surgery, Chapter 15. Edinburgh: Churchill Livingstone; 1989. p. 256.

    Google Scholar 

  4. Eaton CJ, Lister GD. Syndactyly. Hand Clin. 1990;6(4):555.

    CAS  PubMed  Google Scholar 

  5. Kozin SH. Syndactyly. J Am Soc Surg Hand. 2001;1:1–13.

    Google Scholar 

  6. Benson MKD, Fixen JA, Macnicol MF, Parsch K. Children’s orthopaedics and fractures. 2nd ed. Edinburgh: Churchill Linigston; 2002. p. P306–7.

    Google Scholar 

  7. Netscher DT, Baumholtz MA. Treatment of congenital upper extremity problems. Plast Reconstr Surg. 2007;119(5):101e–29.

    PubMed  Google Scholar 

  8. Hogan BL. Morphogenesis. Cell. 1999;96:225–33.

    CAS  PubMed  Google Scholar 

  9. Oligny LL. Human molecular embryogenesis: an overview. Pedatr Dev Pathol. 2001;4:324–43.

    CAS  Google Scholar 

  10. Mariani FV, Martin GR. Deciphering skeletal patterning: clues from the limb. Nature. 2003;423:319–25.

    CAS  PubMed  Google Scholar 

  11. Saunders JW. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool. 1948;108(3):363–403.

    PubMed  Google Scholar 

  12. Saunders JW, Gasseling, MT. Ectodermal-mesodermal interactions in the origin of limb symmetry. Epithelial-Mesenchymal Interactions. Eds., R.E. Fleischmajer and R. Billingham. Baltimore, Maryland: Williams & Wilkins. 1968;78–97.

    Google Scholar 

  13. Todt WL, Fallon JF. Posterior apical ectodermal ridge removal in the chick wing bud triggers a series of events resulting in defective anterior pattern formation. Development. 1987;101(3):501–15.

    CAS  PubMed  Google Scholar 

  14. Manouvrier-Hanu S, Holder-Espinasse M, Lyonnet S. Genetics of limb anomalies in humans. Trends Genet. 1999;15(10):409–17.

    CAS  PubMed  Google Scholar 

  15. Ingham PW, McMahon AP. Hedgehog signalling in animal development. Genes Dev. 2001;15:3059–87.

    CAS  PubMed  Google Scholar 

  16. Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993;75(7):1401–16.

    CAS  PubMed  Google Scholar 

  17. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613–22.

    CAS  PubMed  Google Scholar 

  18. Naski MC, Omitz DM. FGF signalling in skeletal development. Front Biosci. 1998;3:D781–94.

    CAS  PubMed  Google Scholar 

  19. Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 2002;16:870–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian Hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest. 2001;107:295–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Klopocki E, Lohan S, Brancati F, Koll R, Brehm A, Seemann P, et al. Copy-number variations involving the IHH locus are associated with syndactyly and craniosynostosis. Am J Hum Genet. 2011;88(1):70–5. Epub 2010 Dec 17.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Gofflot F, Hars C, Illien F, Chevy F, Wolf C, Picard JJ, et al. Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signalling. Hum Mol Genet. 2003;12(10):1187–98.

    CAS  PubMed  Google Scholar 

  23. Litingtung Y, Dahn RD, Yina L, Fallon JF, Chiang C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature. 2002;418:979–83.

    CAS  PubMed  Google Scholar 

  24. Welscher P, Zuniga A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, et al. Progression of vertebrate limb development through Shh-mediated counteraction of Gli3. Science. 2002;298(5594):827–30.

    Google Scholar 

  25. Chiang C, Litingtung Y, Harris MP, Simandl BK, Li Y, Beachy PA, et al. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev Biol. 2001;236:421–35.

    CAS  PubMed  Google Scholar 

  26. Kraus P, Fraidenraich D, Loomis CA. Some distal limb structures develop in mice lacking Sonic hedgehog signalling. Mech Dev. 2001;100:45–58.

    CAS  PubMed  Google Scholar 

  27. Drossopoulou G, Lewis KE, Sanz-Ezquerro JJ, Nikbakht N, McMahon AP, Hofmann C, et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long and short range Shh signalling and Bmp signalling. Development. 2000;127:1337–48.

    CAS  PubMed  Google Scholar 

  28. Kawakami Y, Capdevilla J, Buscher D, Itoh T, Rodríguez Esteban C, Izpisúa Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001;104:891–900.

    CAS  PubMed  Google Scholar 

  29. Rankin J, Strachan T, Lako M, Lindsay S. Partial cloning and assignment of WNT6 to human chromosome band 2q35 by in situ hybridization. Cytogenet Cell Genet. 1999;84:50–2.

    CAS  PubMed  Google Scholar 

  30. Parr BA, Shea MJ, Vassileva G, McMahon AP. Mouse WNT genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development. 1993;119(1):247–61.

    CAS  PubMed  Google Scholar 

  31. Khan S, Basit S, Zimri F, Ali N, Ali G, Ansar M, et al. A novel homozygous missense mutation in WNT10B in familial split-hand/foot malformation. Clin Genet. 2012;82(1):48–55. doi:10.1111/j1399-0004.2011.01698.x.

    CAS  PubMed  Google Scholar 

  32. Mori C, Nakamura N, Kimura S, Irie H, Takigawa T, Shiota K. Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec. 1995;242:103–10.

    CAS  PubMed  Google Scholar 

  33. Nishii K, Tsuzuki T, Kumai M, Takeda N, Koga H, Aizawa S, et al. Abnormalities of developmental cell death in Dad1-deficient mice. Genes. 1999;4(4):243–52.

    CAS  Google Scholar 

  34. Salas-Vidal E, Valencia C, Covarrubias L. Differential tissue growth and patterns of cell death in mouse limb autopod morphogenesis. Dev Dyn. 2001;220:295–306.

    CAS  PubMed  Google Scholar 

  35. Merino R, Rodriguez-Leon J, Macias D, Gañan Y, Economides AN, Hurle JM. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development. 1999;126:5515–22.

    CAS  PubMed  Google Scholar 

  36. Crocoll A, Herzer U, Ghyselinck NB, Chambon P, Cato AC. Interdigital apoptosis and downregulation of BAG-1 expression in mouse autopods. Mech Dev. 2002;111:149–52.

    CAS  PubMed  Google Scholar 

  37. Heymer J, Rüther U. Syndactyly of Ft/+mice correlates with an imbalance in bmp4 and fgf8 expression. Mech Dev. 1999;88(2):173–81.

    CAS  PubMed  Google Scholar 

  38. Schwabe GC, Mundlos S. Genetics of congenital hand anomalies. Handchir Mikrochir Plast Chir. 2004;36:85–97.

    CAS  PubMed  Google Scholar 

  39. Francis PH, Richardson MK, Brickell PM, Tickle C. Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development. 1994;120:209–18.

    CAS  PubMed  Google Scholar 

  40. Lyons KM, Hogan BL, Robertson EJ. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev. 1995;50:71–83.

    CAS  PubMed  Google Scholar 

  41. Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 1997;386:366–73.

    CAS  PubMed  Google Scholar 

  42. Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM. Role of TGF beta s and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development. 1996;122:2349–57.

    CAS  PubMed  Google Scholar 

  43. Zuzarte-Luis V, Hurle JM. Programmed cell death in the developing limb. Int J Dev Biol. 2002;46:871–6.

    CAS  PubMed  Google Scholar 

  44. Guha U, Gomes WA, Kobayashi T, Pestell RG, Kessler JA. In vivo evidence that BMP signalling is necessary for apoptosis in the mouse limb. Dev Biol. 2002;249(1):108–20.

    CAS  PubMed  Google Scholar 

  45. Yokouchi Y, Sakiyama J, Kameda T, Iba H, Suzuki A, Ueno N, et al. BMP 2/4 mediate programmed cell death in chicken limb buds. Development. 1996;122:3725–34.

    CAS  PubMed  Google Scholar 

  46. Zou H, Niswander L. Requirement for BMP signalling in interdigital apoptosis and scale formation. Science. 1996;272:738–41.

    CAS  PubMed  Google Scholar 

  47. Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F. Regulation of limb patterning by extracellular microfibrils. J Cell Biol. 2001;154(2):275–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Dahn RD, Fallon JF. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signalling. Science. 2000;289:438–41.

    CAS  PubMed  Google Scholar 

  49. McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, et al. ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell. 2009;17(5):687–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Talamillo A, Delgado I, Nakamura T, de-Vega S, Yoshitomi Y, Unda F, et al. Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol. 2010;337(2):363–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ota S, Zhou ZQ, Keene DR, Knoepfler P, Hurlin PJ. Activities of N-Myc in the developing limb link control of skeletal size with digit separation. Development. 2007;134(8):1583–92.

    CAS  PubMed  Google Scholar 

  52. Vortkamp A, Gessler M, Grzeschik KH. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature. 1991;352:539–40.

    CAS  PubMed  Google Scholar 

  53. Johnston JJ, Sapp JC, Turner JT, Amor D, Aftimos S, Aleck KA, et al. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat. 2010;31(10):1142–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Ricks CB, Masand R, Fang P, Roney EK, Cheung SW, Scott DA. Delineation of a 1.65 Mb critical region for hemihyperplasia and digital anomalies on Xq25. Am J Med Genet A. 2010;152A(2):453–8.

    CAS  PubMed  Google Scholar 

  55. Schmidt K, Hughes C, Chudek JA, Goodyear SR, Aspden RM, Talbot R, et al. Cholesterol metabolism: the main pathway acting downstream of cytochrome P450 oxidoreductase in skeletal development of the limb. Mol Cell Biol. 2009;29(10):2716–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Lv D, Luo Y, Yang W, Cao L, Wen Y, Zhao X, et al. A novel single-base deletion in ROR2 causes atypical brachydactyly type B1 with cutaneous syndactyly in a large Chinese family. J Hum Genet. 2009;54(7):422–5.

    CAS  PubMed  Google Scholar 

  57. Böse K, Nischt R, Page A, Bader BL, Paulsson M, Smyth N. Loss of nidogen-1 and -2 results in syndactyly and changes in limb development. J Biol Chem. 2006;281(51):39620–9.

    PubMed  Google Scholar 

  58. Liu Y, Liu C, Yamada Y, Fan CM. Growth arrest specific gene 1 acts as a region-specific mediator of the Fgf10/Fgf8 regulatory loop in the limb. Development. 2002;129(22):5289–300.

    CAS  PubMed  Google Scholar 

  59. Dauwerse JG, de Vries BB, Wouters CH, Bakker E, Rappold G, Mortier GR, et al. A t(4;6)(q12;p23) translocation disrupts a membrane-associated O-acetyl transferase gene (MBOAT1) in a patient with a novel brachydactyly-syndactyly syndrome. Eur J Hum Genet. 2007;15(7):743–51.

    CAS  PubMed  Google Scholar 

  60. Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 1998;12(7):1046–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Sidow A, Bulotsky MS, Kerrebrock AW, Bronson RT, Daly MJ, Reeve MP, et al. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature. 1997;389(6652):722–5.

    CAS  PubMed  Google Scholar 

  62. Hwang SJ, Beaty TH, McIntosh I, Hefferon T, Panny SR. Association between homeobox-containing gene MSX1 and the occurrence of limb deficiency. Am J Med Genet. 1998;75(4):419–23.

    CAS  PubMed  Google Scholar 

  63. Goodman FR. Limb malformations and the human HOX genes. Am J Med Genet. 2002;112(3):256–65.

    PubMed  Google Scholar 

  64. McKusick VA. www.usfca.edu/Library/databases/OMIM/ and Mendelian inheritance in man. 12th ed. Baltimore: Johns Hopkins University Press; 1998.

  65. Temtamy SA, McKusick VA. The genetics of hand malformations. New York, NY: Alan R. Liss New York; 1978. p. 301–22.

    Google Scholar 

  66. Goldstein DJ, Kambouris M, Ward RE. Familial crossed polysyndactyly. Am J Med Genet. 1994;50:215–23.

    CAS  PubMed  Google Scholar 

  67. Malik S, Percin FE, Ahmad W, Percin S, Akarsu NA, Koch MC, et al. Autosomal recessive mesoaxial synostotic syndactyly with phalangeal reduction maps to chromosome 17p13.3. Am J Med Genet A. 2005;134(4):404–8.

    PubMed  Google Scholar 

  68. Jordan D, Hindocha S, Dhital M, Saleh M, Khan W. The epidemiology, genetics and future management of syndactyly. Open Orthop J. 2012;6:14–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Percin EF, Percin S. Two unusual types of syndactyly in the same family; Cenani-Lenz type and “new” type versus severe type I syndactyly? Genet Couns. 2003;14(3):313–9.

    CAS  PubMed  Google Scholar 

  70. Bosse K, Betz RC, Lee YA, Wienker TF, Reis A, Kleen H, et al. Localization of a gene for syndactyly type 1 to chromosome 2q34-q36. Am J Hum Genet. 2000;67(2):492–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ghadami M, Majidzadeh-A K, Haerian BS, Damavandi E, Yamada K, Pasallar P, et al. Confirmation of genetic homogeneity of syndactyly type 1 in an Iranian family. Am J Med Genet. 2001;104(2):147–51.

    CAS  PubMed  Google Scholar 

  72. Robin NH, Segel B, Carpenter G, Muenke M. Craniosynostosis, Philadelphia type: a new autosomal dominant syndrome with sagittal craniosynostosis and syndactyly of the fingers and toes. Am J Med Genet. 1996;62:184–91.

    CAS  PubMed  Google Scholar 

  73. Jain M, Wallis D, Robin NH, De Vrieze FW, Hardy JA, Ghadami M, et al. Locus homogeneity between syndactyly type 1A and craniosynostosis Philadelphia type? Am J Med Genet A. 2008;146A:2308–11.

    PubMed Central  PubMed  Google Scholar 

  74. Rossant J. ENU mutants from the Center of Modeling Human Disease. MGI Direct Data Submission. 2004;Accession ID MGI:3032560.

    Google Scholar 

  75. Malik S, Schott J, Ali SW, Oeffner F, Amin-ud-Din M, Ahmad W, et al. Evidence for clinical and genetic heterogeneity of syndactyly type I: the phenotype of second and third toe syndactyly maps to chromosome 3p21.31. Eur J Hum Genet. 2005;13:1268–74.

    CAS  PubMed  Google Scholar 

  76. Sarfarazi M, Akarsu AN, Sayli BS. Localization of the syndactyly type II (synpolydactyly) locus to 2q31 region and identification of tight linkage to HOXD8 intragenic marker. Hum Mol Genet. 1995;4:1453–8.

    CAS  PubMed  Google Scholar 

  77. Dai L, Heng ZC, Zhu J, Cai R, Mao M, Wang H, et al. Mutation analysis of HOXD13 gene in a Chinese pedigree with synpolydactyly. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22(3):277–80.

    CAS  PubMed  Google Scholar 

  78. Wajid M, Ishii Y, Kurban M, Dua-Awereh MB, Shimomura Y, Christiano AM. Polyalanine repeat expansion mutations in the HOXD13 gene in Pakistani families with synpolydactyly. Clin Genet. 2009;76(3):300–2.

    CAS  PubMed  Google Scholar 

  79. Muragaki Y, Mundlos S, Upton J, Olsen BR. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science. 1996;272(5261):548–51.

    CAS  PubMed  Google Scholar 

  80. Akarsu AN, Stoilov I, Yilmaz E, Sayli BS, Sarfarazi M. Genomic structure of HOXD13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet. 1996;5:945–52.

    CAS  PubMed  Google Scholar 

  81. Goodman FR, Majewski F, Collins AL, Scambler PJ. A 117-kb microdeletion removing HOXD9-HOXD13 and EVX2 causes synpolydactyly. Am J Hum Genet. 2002;70:547–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Goodman FR, Mundlos S, Muragaki Y, Donnai D, Giovannucci-Uzielli ML, Lapi E, et al. Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proc Natl Acad Sci USA. 1997;94:7458–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Malik S, Girisha KM, Wajid M, Roy AK, Phadke SR, Haque S, et al. Synpolydactyly and HOXD13 polyalanine repeat: addition of 2 alanine residues is without clinical consequences. BMC Med Genet. 2007;8:78.

    PubMed Central  PubMed  Google Scholar 

  84. Zhao X, Sun M, Zhao J, Leyva JA, Zhu H, Yang W, et al. Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome. Am J Hum Genet. 2007;80(2):361–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ghoumid J, Andrieux J, Sablonniere B, Odent S, Philippe N, Zanlonghi X, et al. Duplication of chromosome 2q31.1-q31.2 in a family presenting syndactyly and nystagmus. Eur J Hum Genet. 2011;19(11):1198–201. doi:10.1038/ejhg.2011.95.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Debeer P, Schoenmakers EF, Twal WO, Argraves WS, De Smet L, Fryns JP, et al. The fibulin-1 gene (FBLN1) is disrupted in a t (12;22) associated with a complex type of synpolydactyly. Med Genet. 2002;39(2):98–104.

    CAS  Google Scholar 

  87. Debeer P, Schoenmakers EF, De Smet L, Van de Ven WJ, Fryns JP. Co-segregation of an apparently balanced reciprocal t(12;22)(p11.2;q13.3) with a complex type of 3/3’/4 synpolydactyly associated with metacarpal, metatarsal and tarsal synostoses in three family members. Clin Dysmorphol. 1998;7(3):225–8.

    CAS  PubMed  Google Scholar 

  88. Debeer P, Schoenmakers EF, Thoelen R, Holvoet M, Kuittinen T, Fabry G, et al. Physical map of a 1.5 mb region on 12p11.2 harbouring a synpolydactyly associated chromosomal breakpoint. Eur J Hum Genet. 2000;8(8):561–70.

    CAS  PubMed  Google Scholar 

  89. Malik S, Abbasi AA, Ansar M, Ahmad W, Koch MC, Grzeschik KH. Genetic heterogeneity of synpolydactyly: a novel locus SPD3 maps to chromosome 14q11.2-q12. Clin Genet. 2006;69(6):518–24.

    CAS  PubMed  Google Scholar 

  90. Malik S, Grzeschik KH. Synpolydactyly: clinical and molecular advances. Clin Genet. 2008;73(2):113–20.

    CAS  PubMed  Google Scholar 

  91. Kuru I, Samli H, Yucel A, Bozan ME, Turkmen S, Solak M. Hypoplastic synpolydactyly as a new clinical subgroup of synpolydactyly. Hand Surg Br. 2004;29(6):614–20.

    Google Scholar 

  92. Ikegawa M, Han H, Okamoto A, Matsui R, Tanaka M, Omi N, et al. Syndactyly and preaxial synpolydactyly in the single Sfrp2 deleted mutant mice. Dev Dyn. 2008;237(9):2506–17.

    CAS  PubMed  Google Scholar 

  93. Johnston O, Kirby VV. Syndactyly of the ring and little finger. Am J Hum Genet. 1955;7:80–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. De Smet L, Mulier T, Fabry G. Syndactyly of the ring and small finger. Genet Couns. 1994;5:45–9.

    PubMed  Google Scholar 

  95. Schrander-Stumpel CTRM, de Groot-Wijnands JBG, de Die-Smulders C, Fryns JP. Type III syndactyly and oculodentodigital dysplasia: a clinical spectrum. Genet Couns. 1993;4:271–6.

    CAS  PubMed  Google Scholar 

  96. Gladwin A, Donnai D, Metcalfe K, Schrander-Stumpel C, Brueton L, Verloes A, et al. Localization of a gene for oculodentodigital syndrome to human chromosome 6q22-q24. Hum Mol Genet. 1997;6(1):123–7.

    CAS  PubMed  Google Scholar 

  97. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet. 2003;72:408–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Richardson R, Donnai D, Meire F, Dixon MJ. Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J Med Genet. 2004;41(1):60–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Dobrowolski R, Hertig G, Lechner H, Wörsdörfer P, Wulf V, Dicke N, et al. Loss of connexin43-mediated gap junctional coupling in the mesenchyme of limb buds leads to altered expression of morphogens in mice. Hum Mol Genet. 2009;18(15):2899–911.

    CAS  PubMed  Google Scholar 

  100. Fenwick A, Richardson RJ, Butterworth J, Barron MJ, Dixon MJJ. Novel mutations in GJA1 cause oculodentodigital syndrome. Dent Res. 2008;87(11):1021–6.

    CAS  Google Scholar 

  101. Amador C, Mathews AM, Del Carmen MM, Laughridge ME, Everman DB, Holden KR. Expanding the neurologic phenotype of oculodentodigital dysplasia in a 4-generation Hispanic family. J Child Neurol. 2008;23(8):901–5.

    PubMed  Google Scholar 

  102. Debeer P, Van Esch H, Huysmans C, Pijkels E, De Smet L, Van de Ven W, et al. Novel GJA1 mutations in patients with oculo-dento-digital dysplasia (ODDD). Eur J Med Genet. 2005;48(4):377–87.

    PubMed  Google Scholar 

  103. Jamsheer A, Wisniewska M, Szpak A, Bugaj G, Krawczynski MR, Budny B, et al. A novel GJA1 missense mutation in a Polish child with oculodentodigital dysplasia. Appl Genet. 2009;50(3):297–9.

    CAS  Google Scholar 

  104. Dobrowolski R, Sasse P, Schrickel JW, Watkins M, Kim JS, Rackauskas M, et al. The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Hum Mol Genet. 2008;17(4):539–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Dobrowolski R, Sommershof A, Willecke K. Some oculodentodigital dysplasia-associated Cx43 mutations cause increased hemichannel activity in addition to deficient gap junction channels. J Membr Biol. 2007;219(1–3):9–17.

    CAS  PubMed  Google Scholar 

  106. van Es RJ, Wittebol-Post D, Beemer FA. Oculodentodigital dysplasia with mandibular retrognathism and absence of syndactyly: a case report with a novel mutation in the connexin 43 gene. Int J Oral Maxillofac Surg. 2007;36(9):858–60.

    PubMed  Google Scholar 

  107. Vreeburg M, de Zwart-Storm EA, Schouten MI, Nellen RG, Marcus-Soekarman D, Devies M, et al. Skin changes in oculo-dento-digital dysplasia are correlated with C-terminal truncations of connexin 43. Am J Med Genet A. 2007;143(4):360–3.

    CAS  PubMed  Google Scholar 

  108. Wiest T, Herrmann O, Stögbauer F, Grasshoff U, Enders H, Koch MJ, et al. Clinical and genetic variability of oculodentodigital dysplasia. Clin Genet. 2006;70(1):71–2.

    CAS  PubMed  Google Scholar 

  109. Haas SL. Bilateral complete syndactylism of all fingers. Am J Surg. 1940;50:363–6.

    Google Scholar 

  110. Sato D, Liang D, Wu L, Pan Q, Xia K, Dai H, et al. Syndactyly type IV locus maps to 7q36. J Hum Genet. 2007;52:561–4.

    CAS  PubMed  Google Scholar 

  111. Rambaud-Cousson A, Dudin AA, Zuaiter AS, Thalji A. Syndactyly type IV/hexadactyly of feet associated with unilateral absence of the tibia. Am J Med Genet. 1991;40:144–5.

    CAS  PubMed  Google Scholar 

  112. Gillessen-Kaesbach G, Majewski F. Bilateral complete polysyndactyly (type IV Haas). Am J Med Genet. 1991;38:29–31.

    CAS  PubMed  Google Scholar 

  113. Wieczorek D, Pawlik B, Li Y, Akarsu NA, Caliebe A, May KJ, et al. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum Mutat. 2010;31(1):81–9.

    CAS  PubMed  Google Scholar 

  114. Sun M, Ma F, Zeng X, Liu Q, Zhao XL, Wu FX, et al. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J Med Genet. 2008;45:589–95.

    CAS  PubMed  Google Scholar 

  115. Wang ZQ, Tian SH, Shi YZ, Zhou PT, Wang ZY, Shu RZ, et al. A single C to T transition in intron 5 of LMBR1 gene is associated with triphalangeal thumb-polysyndactyly syndrome in a Chinese family. Biochem Biophys Res Commun. 2007;355(2):312–7.

    CAS  PubMed  Google Scholar 

  116. Kemp T, Ravn J. Ueber erbliche Hand-und Fussdeformitaeten in einem 140-koepfigen Geschlecht, nebst einigen Bemerkungen ueber Poly-und Syndaktylie beim Menschen. Acta Psychiatr Neurol Scand. 1932;7:275–96.

    Google Scholar 

  117. Robinow M, Johnson GF, Broock GJ. Syndactyly type V. Am J Med Genet. 1982;11:475–82.

    CAS  PubMed  Google Scholar 

  118. Kjaer KW, Hansen L, Eiberg H, Utkus A, Skovgaard LT, Leicht P, et al. A 72-year-old Danish puzzle resolved—comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions. Am J Med Genet. 2005;138A:328–39.

    Google Scholar 

  119. Cenani A, Lenz W. Totale Syndaktylie und totale radioulnare Synostose bie zwei Bruedern. Ein Beitrag zur Genetik der Syndaktylien Ztschr Kinderheilk. 1967;101:181–90.

    CAS  Google Scholar 

  120. Liebenam L. Ueber gleichzeitiges Vorkommen von Gliedmassendefekten und osteosklerotischer Systemerkrunkung. Ztschr Mensch Vererbungs-und Konstitutionslehre. 1938;21:697–703.

    Google Scholar 

  121. Borsky AJ. Congenital anomalies of the hand and their surgical treatment. Springfield, IL: Charles C Thomas; 1958.

    Google Scholar 

  122. Yelton CL. Certain congenital limb deficiencies occurring in twins and half siblings. Inter-Clinic Inform Bull. 1962;1:1–7.

    Google Scholar 

  123. Drögemüller C, Leeb T, Harlizius B, Tammen I, Distl O, Höltershinken M, et al. Congenital syndactyly in cattle: four novel mutations in the low density lipoprotein receptor-related protein 4 gene (LRP4). BMC Genet. 2007;8:5.

    PubMed Central  PubMed  Google Scholar 

  124. Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, et al. Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics. 2006;87(5):673–7.

    CAS  PubMed  Google Scholar 

  125. Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, et al. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet. 2010;86(5):696–706.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Bacchelli C, Goodman FR, Scambler PJ, Winter RM. Cenani-Lenz syndrome with renal hypoplasia is not linked to FORMIN or GREMLIN. Clin Genet. 2001;59:203–5.

    CAS  PubMed  Google Scholar 

  127. Dimitrov BI, Voet T, De Smet L, Vermeesch JR, Devriendt K, Fryns JP, et al. Genomic rearrangements of the GREM1–FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani–Lenz-like non-syndromic oligosyndactyly. J Med Genet. 2010;47(8):569–74.

    CAS  PubMed  Google Scholar 

  128. Harpf C, Pavelka M, Hussl H. A variant of Cenani-Lenz syndactyly (CLS): review of the literature and attempt of classification. Br J Plast Surg. 2005;58(2):251–7.

    CAS  PubMed  Google Scholar 

  129. Orel H. Kleine Beitrage zur Vererbungswissenschaft. Synostosis Metacarpi Quarti et Quinti Z Anat. 1928;14:244–52.

    Google Scholar 

  130. Lonardo F, Della Monica M, Riccardi G, Riccio I, Riccio V, Scarano G. A family with X-linked recessive fusion of metacarpals IV and V. Am J Med Genet. 2004;124A:407–10.

    PubMed  Google Scholar 

  131. Holmes LB, Wolf E, Miettinen OS. Metacarpal 4-5 fusion with X-linked recessive inheritance. Am J Hum Genet. 1972;24:562–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Lerch H. Erbliche Synostosen der Ossa metacarpalia IV und V. Z Orthop. 1948;78:13–6.

    Google Scholar 

  133. Faiyaz-Ul-Haque M, Zaidi SHE, King LM, Haque S, Patel M, Ahmad M, et al. Fine mapping of the X-linked split-hand/split-foot malformation (SHFM2) locus to a 5.1-Mb region on Xq26.3 and analysis of candidate genes. Clin Genet. 2005;67:93–7.

    CAS  PubMed  Google Scholar 

  134. Percin EF, Percin S, Egilmez H, Sezgin I, Ozbas F, Akarsu AN. Mesoaxial complete syndactyly and synostosis with hypoplastic thumbs: an unusual combination or homozygous expression of syndactyly type I. J Med Genet. 1998;35(10):868–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Malik S, Arshad M, Amin-ud-Din M, Oeffner F, Dempfle A, Haque S, et al. A novel type of autosomal recessive syndactyly: clinical and molecular studies in a family of Pakistani origin. Am J Med Genet. 2004;126A:61–7.

    PubMed  Google Scholar 

  136. Losch G, Duncker H. Acrosyndactylism. Transactions of the International Society of Plastic and Reconstructive Surgeons, 5th Congress. Melbourne: Butterworth Pty; 1971.

    Google Scholar 

  137. Patterson T. Congenital ring constrictions. Br J Plast Surg. 1961;14:1–31.

    CAS  PubMed  Google Scholar 

  138. Torpin R, Faulkner A. Intrauterine amputation with the missing member found in the fetal membranes. JAMA. 1966;198:185–7.

    CAS  PubMed  Google Scholar 

  139. Upton J. Congenital anomalies of the hand and forearm. In: McCarthy JG, May Jr JW, Littler JW, editors. The hand, vol 8 plastic surgery. Philadelphia, PA: WB Saunders; 1990. p. 5213–398.

    Google Scholar 

  140. Acrosyndactyly WR. A study of 27 patients. Clin Orthop. 1970;71:99–111.

    Google Scholar 

  141. Maisels D. Acrosyndactyly. Br J Plast Surg. 1962;15:166–72.

    CAS  PubMed  Google Scholar 

  142. Poland A. Deficiency of the pectoral muscles. Guy’s Hosp Rep. 1841;VI:191–3.

    Google Scholar 

  143. Clarkson P. Poland’s syndactyly. Guy’s Hosp Rep. 1962;111:335–46.

    CAS  Google Scholar 

  144. Bouvet J, Leveque D, Bernetieres F, Gros JJ. Vascular origin of Poland syndrome: a comparative rheographic study of the vascularisation of the arms in eight patients. Eur J Pediatr. 1978;128:17–26.

    CAS  PubMed  Google Scholar 

  145. Fraser FC, Ronen GM, O’Leary E. Pectoralis major defect and Poland sequence in second cousins: extension of the Poland sequence spectrum. Am J Med Genet. 1989;33:468–70.

    CAS  PubMed  Google Scholar 

  146. Bouwes-Bavinck J, Weaver D. Subclavian artery supply disruption sequence: hypothesis of a vascular etiology for Poland, Klippel-Feil, and Mobius anomalies. Am J Med Genet. 1986;23:903–18.

    Google Scholar 

  147. Wilson M, Louis DS, Stevenson TR. Poland’s syndrome: variable expression and associated anomalies. J Hand Surg Am. 1988;13:880–2.

    CAS  PubMed  Google Scholar 

  148. Karnak I, Tanyel FC, Tunçbilek E, Unsal M, Büyükpamukçu N. Bilateral Poland anomaly. Am J Med Genet. 1998;75(5):505–7.

    CAS  PubMed  Google Scholar 

  149. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165–72.

    CAS  PubMed  Google Scholar 

  150. Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet. 1997;15:36–41.

    PubMed  Google Scholar 

  151. Paznekas WA, Cunningham ML, Howard TD, Korf BR, Lipson MH, Grix AW, et al. Genetic heterogeneity of Saethre-Chotzen syndrome, due to TWIST and FGFR mutations. Am J Hum Genet. 1998;62:1370–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Muenke M, Schell U, Hehr A, Robin NH, Losken HW, Schinzel A, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet. 1994;8:269–74.

    CAS  PubMed  Google Scholar 

  153. Rossi M, Jones RL, Norbury G, Bloch-Zupan A, Winter R. The appearance of the feet in Pfeiffer syndrome caused by FGFR1 P252R mutation. Clin Dysmorphol. 2003;12:269–74.

    PubMed  Google Scholar 

  154. Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, et al. RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 2007;80:1162–70. Note: Erratum: Am. J. Hum. Genet. 81: 1114 only, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Cohen DM, Green JG, Miller J, Gorlin RJ, Reed JA. Acrocephalopolysyndactyly type II—Carpenter syndrome: clinical spectrum and an attempt at unification with Goodman and Summitt syndromes. Am J Med Genet. 1987;28:311–24.

    CAS  PubMed  Google Scholar 

  156. McGregor L, Makela V, Darling SM, Vrontou S, Chalepakis G, Roberts C, et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet. 2003;34:203–8.

    CAS  PubMed  Google Scholar 

  157. Shafeghati Y, Kniepert A, Vakili G, Zenker M. Fraser syndrome due to homozygosity for a splice site mutation of FREM2. Am J Med Genet. 2008;146A:529–31.

    CAS  PubMed  Google Scholar 

  158. Carney TJ, Feitosa NM, Sonntag C, Slanchev K, Kluger J, Kiyozumi D, et al. Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome disease genes. PLoS Genet. 2010;6(4):e1000907.

    PubMed Central  PubMed  Google Scholar 

  159. Malik S, Ahmad W, Grzeschik KH, Koch MC. A simple method for characterising syndactyly in clinical practice. Genet Couns. 2005;16:229–38.

    CAS  PubMed  Google Scholar 

  160. Winter RM, Tickle C. Syndactylies and polydactilies: embryological overview and suggested classification. Eur J Hum Genet. 1993;1:96–104.

    CAS  PubMed  Google Scholar 

  161. Man LX, Chang B. Maternal cigarette smoking during pregnancy increases the risk of having a child with a congenital digital anomaly. Plast Reconstr Surg. 2006;117(1):301–8.

    CAS  PubMed  Google Scholar 

  162. Luo JY, Fu CH, Yao KB, Hu RS, Qy D, Liu ZY. A case-control study on genetic and environmental factors regarding polydactyly and syndactyly. Zhonghua Liu Xing Bing Xue Za Zhi. 2009;30(9):903–6.

    PubMed  Google Scholar 

  163. Lorea P, Coessens BC. Evolution of surgical techniques for skin release. Eur J Plast Surg. 2001;24:275–81.

    Google Scholar 

  164. Oda T, Pushman AG, Chung KC. Treatment of common congenital hand conditions. Plast Reconstr Surg. 2010;126(3):121e–33.

    CAS  PubMed  Google Scholar 

  165. Kettelkamp DB, Flatt AE. An evaluation of syndactylia repair. Surg Gynecol Obstet. 1961;113:471–8.

    CAS  PubMed  Google Scholar 

  166. Dao K, Shin AY, Billings A. Surgical treatment of congenital syndactyly of the hand. J Am Acad Orthop Surg. 2004;12:39–48.

    PubMed  Google Scholar 

  167. Hutchinson DT, Frenzen SW. Digital syndactyly release. Tech Hand Up Extrem Surg. 2010;14(1):33–7.

    PubMed  Google Scholar 

  168. Deunck J, Nicolai JP, Hamburg SM. Long-term results of syndactyly correction: full-thickness versus split-thickness skin grafts. J Hand Surg Br. 2003;28(2):125–30.

    Google Scholar 

  169. Lumenta DB, Kitzinger HB, Beck H, Frey M. Long-term outcomes of web creep, scar quality and function after simple syndactyly surgical treatment. J Hand Surg Am. 2010;35(8):1323–9.

    PubMed  Google Scholar 

  170. Kamath JB, Vardhan H, Naik DM, Bansal A, Rai M, Kumar A. A novel method of using mini external fixator for maintaining web space after the release of contracture and syndactyly. Tech Hand Up Extrem Surg. 2013;17(1):37–40.

    PubMed  Google Scholar 

  171. Aydin A, Ozden BC. Dorsal metacarpal island flap in syndactyly treatment. Ann Plast Surg. 2004;52(1):43–8.

    PubMed  Google Scholar 

  172. Sharma RK, Tuli P, Makkar SS, Parashar A. End-f-skin grafts in syndactyly release: description of a new flap for web resurfacing and primary closure of finger defects. Hand. 2009;4(1):29–34.

    PubMed Central  PubMed  Google Scholar 

  173. Gao W, Yan H, Zhang F, Jiang L, Wang A, Yang J, et al. Dorsal pentagonal local flap: a new technique of web reconstruction for syndactyly without skin graft. Aesthetic Plast Surg. 2011;35(4):530–7.

    PubMed  Google Scholar 

  174. Yao JM, Shong JL, Sun H. Repair of incomplete simple syndactyly by a web flap on a subcutaneous tissue pedicle. Plast Reconstr Surg. 1997;99:2079–81.

    CAS  PubMed  Google Scholar 

  175. Tadiparthi S, Mishra A, Mcarthur P. A modification of the Chinese island flap technique for simple incomplete syndactyly release. J Hand Surg Eur Vol. 2009;34(1):99–103.

    CAS  PubMed  Google Scholar 

  176. Greuse M, Coessens BC. Congenital syndactyly: defatting facilitates closure without skin graft. J Hand Surg Am. 2001;26:589–94.

    CAS  PubMed  Google Scholar 

  177. Jose RM, Timoney N, Vidyadharan R, Lester R. Syndactyly correction: an aesthetoc reconstruction. J Hand Surg Eur Vol. 2010;35(6):446–50.

    CAS  PubMed  Google Scholar 

  178. Buck-Gramcko D. Congenital malformations: syndactyly and related deformities. In: Higst H, Buck-Gramcko D, Millesi H, et al., editors. Hand surgery. New York, NY: Thieme Medical Publishers; 1988.

    Google Scholar 

  179. Niranjan NS, Azad SM, Fleming ANM, Liew SH. Long-term results of primary syndactyly correction by the trilobed flap technique. Br J Plast Surg. 2005;58:14–21.

    CAS  PubMed  Google Scholar 

  180. Vekris MD, Lykissas MG, Soucacos PN, Korompilias AV, Beris AE. Congenital syndactyly: outcome of surgical treatment in 131 webs. Tech Hand Up Extrem Surg. 2010;14:2–7.

    PubMed  Google Scholar 

  181. Goldfarb CA, Steffen JA, Stutz CM. Complex syndactyly: aesthetic and objective outcomes. J Hand Surg Am. 2012;37:2068–73.

    PubMed  Google Scholar 

  182. Miyamoto J, Nagasao T, Miyamoto S. Biomechanical analysis of surgical correction of syndactyly. Plast Reconstr Surg. 2010;125(3):963–8.

    CAS  PubMed  Google Scholar 

  183. Cromblehome TM, Dirkes K, Whitney TM, Alman B, Garmel S, Connelly RJ. Amniotic band syndrome in fetal lambs: I. Fetoscopic release and morphometric outcome. J Pediatr Surg. 1995;30:974.

    Google Scholar 

  184. Husler MR, Wilson RD, Horri SC, Bebbington MW, Adzick NS, Johnson MP. When is fetoscopic release of amniotic bands indicated? Review of outcome of cases treated in utero and selection criteria for fetal surgery. Prenat Diagn. 2009;29:457–63.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Hindocha M.D., M.B.Ch.B. M.Phil, M.R.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jordan, D.J., Snashall, E., Hindocha, S. (2015). Syndactyly. In: Laub Jr., D. (eds) Congenital Anomalies of the Upper Extremity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7504-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7504-1_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7503-4

  • Online ISBN: 978-1-4899-7504-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics