Skip to main content

Structure and Energetics of Polyhedral Oligomeric Silsesquioxane (T8,T10,T12-POSS) Cages with Atomic and Ionic Lithium Species

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

The structures of endohedral complexes of polyhedral oligomeric silsesquioxane (POSS) cage molecules (HSiO3/2)8, (HSiO3/2)10, and (HSiO3/2)12, containing either atomic or ionic lithium species are determined using density functional theory with the B3LYP functional and the 6-311G(d,p) and 6-311+G(d,p) basis sets. The structures and stabilities of these nanostructures depend on the cage size and the number and charge of the Li species encapsulated in the (HSiO3/2)8, (HSiO3/2)10, and (HSiO3/2)12 host cages. Li cation encapsulation shows attractive interactions with cage oxygen atoms leading to cage shrinkage. Li anion encapsulation breaks the (HSiO3/2)8 host cage. Stable endohedral POSS cages with varying number of neutral and ionic lithium were identified by calculating their inclusion energies and adiabatic and vertical ionization potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li G, Wang L, Ni H, Pittman CU Jr (2002) J Inorg Organomet Polym 11:123

    Article  Google Scholar 

  2. Fu BX, Hsiao BS, Pagola S, Stephens P, White H, Rafailovich M, Sokolov J, Mather PT, Jeon H, Philips S, Lichtenhan J, Schwab J (2001) Polymer 42:599

    Article  CAS  Google Scholar 

  3. Li H, Eddaouddi M, Richardson DA, Yaghi OM (1998) J Am Chem Soc 120:8567

    Article  CAS  Google Scholar 

  4. Brown JF Jr, Vogt LH Jr (1965) J Am Chem Soc 87:4313

    Article  CAS  Google Scholar 

  5. Dance B (2001) Semiconduct Int 24:46

    Google Scholar 

  6. Feher FJ, Wyndham KD (1998) Chem Commun :323

    Google Scholar 

  7. Li GZ, Wang L, Toghiani H, Daulton TL, Koyama K, Pittman CU Jr (2001) Macromolecules 34:8686

    Article  CAS  Google Scholar 

  8. Li GZ, Wang L, Toghiani H, Daulton TL, Pittman CU Jr (2002) Polymer 43:4167

    Article  CAS  Google Scholar 

  9. Maxim N, Abbenhuis HCL, Stobbelaar PJ, Mojet BL, Van Santen RR (1999) Phys Chem Chem Phys 18:4473

    Article  Google Scholar 

  10. Maxim N, Magusin PCMM, Kooyman PJ, Van Wolput JHMC, Van Santen RA, Abbenhuis HCL (2001) Chem Mater 13:2958

    Article  CAS  Google Scholar 

  11. Wada K, Yamada K, Kondo T, Mitsudo TA (2001) Chem Lett 30:12

    Google Scholar 

  12. Lamm MH, Chen T, Glotzer SC (2003) Nano Lett 3:989

    Article  CAS  Google Scholar 

  13. Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) J Polym Sci Polym Phys 36:1857

    Article  CAS  Google Scholar 

  14. Lee A, Lichtenhan JDJ (1999) J Appl Polym Sci 73:1993

    Article  CAS  Google Scholar 

  15. Haddad TS, Lichtenhan JD (1996) Macromolecules 29:7302

    Article  CAS  Google Scholar 

  16. Schwab JJ, Lichtenhan JD (1998) Appl Organomet Chem 12:707

    Article  CAS  Google Scholar 

  17. McCusker C, Carroll JB, Rotello VM (2005) Chem Commun :996

    Google Scholar 

  18. Liu JC (1999) Appl Organomet Chem 13:295

    Article  CAS  Google Scholar 

  19. Raj R, Riedel R, Soraru GD (2001) J Am Ceram Soc 84:2158

    Article  Google Scholar 

  20. Abbenhuis HCL (2000) Chem Eur J 6:25

    Article  CAS  Google Scholar 

  21. Ducateau R, Cremer U, Harmsen RJ, Mohamud SI, Abbenhuis CL, Saten RA, Meetsma A, Thiele SKH, van Tol FFH, Kranenburg M (1999) Organometallics 18:5447

    Article  CAS  Google Scholar 

  22. Klunduk MC, Maschmeyer T, Thomas JM, Johnson FG (1999) Chem Eur J 5:1481

    Article  CAS  Google Scholar 

  23. Pescarmona PP, Waal JCD, Maxwell IE, Maschmeyer T (2001) Angew Chem Int Ed 40:740

    Article  CAS  Google Scholar 

  24. Xiao FS, Han Y, Yu Y, Meng X, Yang M, Wu S (2002) J Am Chem Soc 124:888

    Article  CAS  Google Scholar 

  25. Coupar PI, Jaffres PA, Morris RE (1999) J Chem Soc, Dalton Trans :2183

    Google Scholar 

  26. de Vos RM, Verweij HJ (1998) J Membr Sci 143:37

    Article  Google Scholar 

  27. Suzuki F, Nakane K, Yasuo H (1995) J Membr Sci 104:183

    Article  Google Scholar 

  28. Feng X, Shao P, Huang YR, Jiang G, Xu X (2002) Sep Purif Tech 27:211

    Article  CAS  Google Scholar 

  29. Xiang KH, Pandey R, Pernisz UC, Freeman J (1998) J Phys Chem B 102:8704

    Article  CAS  Google Scholar 

  30. Villaescusa LA, Lightfoot P, Morris RE (2002) Chem Commun 19:2220

    Article  CAS  Google Scholar 

  31. Bassindale AR, Pourny M, Taylor PG, Hursthouse MB, Light ME (2003) Angew Chem 42:3488

    Google Scholar 

  32. Bassindale AR, Parker DJ, Pourny M, Taylor PG, Horton PN, Hursthouse MB (2004) Organometallics 23:4400

    Google Scholar 

  33. Park SS, Xiao C, Hagelberg F, Hossain D, Pittman CU Jr, Saebø S (2004) J Phys Chem A 108:11260

    Google Scholar 

  34. Satre G, Pulido A, Corma A (2005) Chem Commun 18:2357

    Article  CAS  Google Scholar 

  35. Päch M, Macrae RM, Carmichael I (2006) J Am Chem Soc 128:6111

    Google Scholar 

  36. Tossel JA (2007) J Phys Chem C 111:3584

    Article  CAS  Google Scholar 

  37. Anderson SE, Bodzin DJ, Haddad TS (2008) Chem Mater 20:4299

    Google Scholar 

  38. Geoge AR, Catlow CRA (1995) Chem Phys Lett 247:408

    Article  Google Scholar 

  39. Kudo T (2009) J Phys Chem A 113:12311

    Google Scholar 

  40. Kudo T, Taketsugu T, Gordon MS (2011) J Phys Chem A 115:2679

    Article  CAS  Google Scholar 

  41. Skelton AA, Fried JR (2013) Phys Chem Chem Phys 15:4341

    Article  CAS  Google Scholar 

  42. Päch M, Stösser R (1997) J Phys Chem A 101:8360

    Article  Google Scholar 

  43. Hossain D, Pittman CU Jr, Saebø S, Hagelberg F (2007) J Phys Chem C 111:6199

    Article  CAS  Google Scholar 

  44. Hossain D, Pittman CU Jr, Hagelberg F, Saebø S (2008) J Phys Chem C 112:16070

    Article  CAS  Google Scholar 

  45. Hossain D, Gwaltney SR, Pittman CU Jr, Saebø S (2009) Chem Phys Lett 467:348

    Article  CAS  Google Scholar 

  46. Shao Y, Fusti-Molnar L, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, Distasio RA Jr, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Voorhis TV, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF III, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8:3172

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1998) Phys Rev B: Condens Matter Mater Phys 37:785

    Article  Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  49. Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062

    Article  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Molec Graphics 14:33

    Article  CAS  Google Scholar 

  51. Agaskar PA, Klemperer WG (1995) Inorg Chim Acta 229:355

    Article  CAS  Google Scholar 

  52. Auf der Heyde TPE, Bürgi HB, Bürgy H, Törnroos KW (1991) Chimia 45:38

    CAS  Google Scholar 

  53. de Man AJM, Sauer J (1996) J Phys Chem 100:5025

    Article  Google Scholar 

  54. Tossell JA (1996) J Phys Chem 100:14828

    Article  CAS  Google Scholar 

  55. Pasquarello A, Hybertsen MS, Car R (1996) Phys Rev B 54:R2339

    Article  CAS  Google Scholar 

  56. Tejerina B, Gordon MS (2002) Phys Chem B 106:11764

    Article  CAS  Google Scholar 

  57. Cho H, Liang K, Chatterjee S, Pittman CU Jr (2005) J Inorg Organometal Polym, Mater 15:541

    Google Scholar 

  58. Lee SY, Boo BH, Kang HK, Kang D, Judai K, Nishijo J, Nishi N (2005) Chem Phys Lett 411:484

    Article  CAS  Google Scholar 

  59. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1993) NBO 4.M. University of Wisconsin, Madison

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Science Foundation under awards number EPS 0903787 and EPS 1006883

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Gwaltney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rehman, H.U., Gwaltney, S.R. (2014). Structure and Energetics of Polyhedral Oligomeric Silsesquioxane (T8,T10,T12-POSS) Cages with Atomic and Ionic Lithium Species. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_5

Download citation

Publish with us

Policies and ethics