Skip to main content

Granularity in Narrow Wires: Conductance Fluctuations, Diffuse Boundaries and Junction Scattering

  • Chapter
Granular Nanoelectronics

Part of the book series: NATO ASI Series ((NSSB,volume 251))

Abstract

Many factors determine the electrical conductivity of a narrow wire. In a weakly disordered system we can begin with the Drude conductivity, σ=ne2τ/m, and add corrections which take account of various aspects of transport not included in this simple expression (see Fig. 1). For instance, disorder induced corrections arise from quantum interference and electron-electron interaction, generally lowering the conductivity. The interference arises because of coherent backscattering of electrons and reduces the diffusion coefficient below the classical result (D = vF l /2 for specular scattering) while the electron-electron interaction lowers the density of states at the Fermi energy. We can rewrite the Drude expression in terms of the diffusion coefficient, D, and the density of states, N(EF), as σ = e2DN(EF) and provided the corrections are small, δσ/σ ~ δD/D + δN/N(EF), so that the two are additive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akera, H., and Ando, T., 1990, Boundary Roughness and Magnetoresistance in Quantum Wires, ICPS to be published.

    Google Scholar 

  • Altshuler, B. L., and Aronov, A. G., 1981, Magnetoresistance of Thin Films and Wires in a Longitudinal Magnetic Field, JETP Lett., 33:499.

    ADS  Google Scholar 

  • Altshuler, B. L., and Aronov, A. G., 1983, Fermi Liquid Theory of the Electron-Electron Interaction, Solid State Comm., 46:429.

    Article  ADS  Google Scholar 

  • Altshuler, B. L., and Spivak, B. Z., 1985, Variation of the Random Potential and the Conductivity of Samples of Small Dimensions, JETP Lett., 42:447.

    ADS  Google Scholar 

  • Beenakker, C. W. J., and van Houten, H., 1988, Flux Cancellation Effect on Narrow Channel Magnetoresistance Fluctuations, Phys. Rev. B, 38:3232.

    Article  ADS  Google Scholar 

  • Beenakker, C. W. J., and van Houten, H., 1989, Billiard Model of a Ballistic Multiprobe Conductor, Phys. Rev. Lett., 63:1857; see also “Electronic Properties of Multilayers and Low Dimensional Solids” Ed. by J M Chamberlain, L Eaves and J C Portal (Plenum, London, 1990).

    Article  ADS  Google Scholar 

  • Bergmann, G., 1983, Physical Interpretation of Weak Localisation, Phys. Rev. B, 28:2914.

    Article  MathSciNet  ADS  Google Scholar 

  • Buttiker, M., 1988, Absence of Backscattering in the Quantum Hall Effect in Multiprobe Conductors, Phys. Rev B, 38:9375.

    Article  MathSciNet  ADS  Google Scholar 

  • Chang, A. M., Chang, T. Y., and Baranger, H. U., 1989, Quenching of the Hall Resistance in a Novel Geometry, Phys Rev Lett., 63:996.

    Article  ADS  Google Scholar 

  • Datta, S., 1989, Quantum Devices, Superlattices and Micro s true, 6:83.

    Article  ADS  Google Scholar 

  • Davies, J. A., and Nixon, J. H., 1990, Potential Fluctuations in Heterostructure Devices, Phys. Rev. B, 41:7929.

    Article  ADS  Google Scholar 

  • Feng, S., Lee, P. A., and Stone, A. D., 1986, Sensitivity of the Conductance of a Disordered Metal to the Motion of a Single Atom, Phys, Rev. Lett., 56:1960.

    Article  ADS  Google Scholar 

  • Ford, C. J. B., Thornton, T. J., Newbury, R., Pepper, M., Ahmed, H., Peacock, D., Ritchie, D., Frost, J., and Jones, G., 1989, Vanishing Hall Voltage in a Quasi ID GaAs:AlGaAs Heterojunction, Phys. Rev. B, 38:8518.

    Article  ADS  Google Scholar 

  • Ford, C. J. B., Washburn, S., Buttiker, M., Knoedler, C. M., and Hong, J. M., 1989, The Influence of Geometry on the Hall Effect in Ballistic Wires, Phys. Rev.Lett., 62:2724.

    Article  ADS  Google Scholar 

  • Forsvoll, K., and Holwech, L., 1964, Galvanomagnetic Size Effects in Aluminum Films, Phil. Mag., 9:435.

    Article  ADS  Google Scholar 

  • Foxon, C. T., Harris, J. J., Hilton, D., Hewet, J., and Roberts, C., 1989, Optimisation of GaAs:AlGaAs 2DEG Structures for Low Carrier Density and Ultra High Mobilities at Low Temperatures, Semicond. Sci. Technol., 4:582.

    Article  ADS  Google Scholar 

  • Fuchs, K., 1938, Proc. Camb. Phil. Soc, 34:100.

    Article  ADS  Google Scholar 

  • Haanappel, E. G., and van der Marel, D., 1989, Conductance Oscillations in Two Dimensional Sharvin Point Contacts, Phys. Rev. B, 39:5484.

    Article  ADS  Google Scholar 

  • Hirakawa, K., Sakaki, H., and Yoshino, J., 1985, Mobility Modulation of the 2DEG via Controlled Deformation of the Electron Wavefunction in Selectively Doped AlGaAs:GaAs Heterojunctions, Phys. Rev. Lett., 54:1279.

    Article  ADS  Google Scholar 

  • Hiramoto, T., Hirakawa, K., Lye, Y., and Ikoma, T., 1987, One Dimensional GaAs Fabricated by Ion Beam Implantation, Appl. Phys. Lett., 51:1620.

    Article  ADS  Google Scholar 

  • Hirayama, Y., Tarucha, S., Suzuki, Y., and Okamoto, H., 1988, Fabrication of a GaAs Quantum Well Wire Structure by Ga Focussed Ion Beam Implantation and its Optical Properties, Phys Rev B, 31:211 A.

    Google Scholar 

  • van Houten, H., Beenakker, C. W. J., van Wees, B. J., and Mooij, J. E., 1988, Boundary Scattering Modified ID Weak Localisation in Sub Micron GaAs:AlGaAs Heteroj unctions, Surf. Sei., 196:144.

    Article  Google Scholar 

  • Kirczenow, G., 1990, Quantum Theory of Hall Anomalies and Bend Resistance in Narrow Ballistic Conductors at Low Magnetic Fields, Solid State Comm., 74:1051.

    Article  ADS  Google Scholar 

  • Lamelle, F., Bagchi A., Tsuchiya M., Merz J., and Petroff P. M., 1990, Focussed Ion Beam Channeling Effects and Ultimate Sizes of GaAlAs/GaAs Nanostructures, Appl. Phys. Lett., 56:1561.

    Article  ADS  Google Scholar 

  • Lee, P. A., Stone, A. D., and Fukuyama, H., 1987, Universal Conductance Fluctuations in Metals, Phys. Rev. B, 35:1039.

    Article  ADS  Google Scholar 

  • Molenkamp, L. W., Staring A., Beenakker C. W. J., Eppanga, R., Timmering, C. E., Williamson, J. G., Harmans, C., and Foxon, C. T., 1990, Electron Beam Collimation with a Quantum Point Comtact, Phys. Rev B, 41:1274.

    Article  ADS  Google Scholar 

  • Pippard, A. B., 1989, “Magnetoresistance in Metals,” Chapter 6 and references therein, Cambridge Univ. Press.

    Google Scholar 

  • Roukes, M. L., Scherer, A., Allen, S. J., Craighead, H. G., Ruthen, R. M., Beebe, E. D., and Harbison, J. P., 1987, Quenching of the Hall Effect in a One Dimensional Wire, Phys. Rev. Lett., 57:3011.

    Article  ADS  Google Scholar 

  • Roukes, M. L., Thornton, T. J., Scherer, A., and Van der Gaag, B. P., 1990a, in “Electronic Properties of Multilayers and Low Dimensional Solids” Ed. by J M Chamberlain, L Eaves and J C Portal (Plenum, London).

    Google Scholar 

  • Roukes, M. L., Scherer, A., and Van der Gaag, B. P., 1990b, Are Transport Anomalies in Electron Waveguides Classical, Phys. Rev. Lett., 64:1154.

    Article  ADS  Google Scholar 

  • Sakaki, H., 1980, Scattering Suppression and High Mobility Effect of Size Quantised Wires in Ultrafine Semiconductor Wire Structures, Jpn. J. Appl. Phys., 19:L735.

    Article  ADS  Google Scholar 

  • Scherer, A., and Roukes, M. L., 1989, Quantum Device Microfabrication, Appl. Phys. Lett., 55:377.

    Article  ADS  Google Scholar 

  • Scopol, W. J., Mankiewich P. M., Howard R. E., Jackel L. D., Tennant D. D., and Stone A. D., 1986, Universal Conductance Fluctuations in Silicon Inversion-Layer Nanostructures, Phys. Rev. Lett., 56:2865.

    Article  ADS  Google Scholar 

  • Spector, J., Stormer, H. L., Baldwin, K. W., Pfeiffer, L. N., and West, K. W., 1990, in “Proc. 4th Int. Conf. on Modulated Semiconductor Structures” (Ann Arbor) to be published in Surface Science.

    Google Scholar 

  • Takagaki, Y., Gamo, K., Nambo, S., Ishida, S., Takaoka, S., Murase, K., Ishibashi, K., and Aoyagi, Y., 1988, Non Local Quantum Transport in Narrow Multi-Branched Electron Waveguides, Solid State Comm., 68:1051.

    Article  ADS  Google Scholar 

  • Taylor, R. P., Main P.C., Eaves L., Beaumont S.P., Thorns S., Wilkinson C., Proc. 19thICPS 1988, Warsaw, Ed. by W. Zawadzki, Pub. by IOP Polish Academy of Sciences.

    Google Scholar 

  • Thornton, T. J., Pepper, M., Ahmed, H., Davies, G. J., and Andrews, D. A., 1986, One Dimensional Conduction in the 2DEG of a GaAs:AlGaAs Heterojunction, Phys. Rev. Lett., 56:1181.

    Google Scholar 

  • Thornton, T. J., Roukes, M. L., Scherer, A., and Van der Gaag, B. P., 1989, Boundary Scattering in Quantum Wires, Phys. Rev. Lett 63, 2128

    Article  ADS  Google Scholar 

  • Thornton, T. J., Roukes, M. L., Scherer, A., and Van der Gaag B. P., 1990, in “Science and Technology of 1- and 0- Dimensional Semiconductors” S P Beaumont and C M Sottomayor-Torres eds. Plenum, London, to be published

    Google Scholar 

  • Timp, G., Baranger, H. U., de Vegvar, P., Cunningham, J. E., Howard, R. E., Behringer, R., and Mankiewich, P. M., 1988, Propagation Around a Bend in a Multichannel Electron Waveguide, Phys. Rev. Lett., 60:2081.

    Article  ADS  Google Scholar 

  • Umbach, C. P., Washburn, S., Laibowitz, R. B., and Webb, R. A., 1984, Magnetoresistance of Small, Quasi-one-dimensional Normal-Metal Rings, Phys Rev B, 30:4048.

    Article  ADS  Google Scholar 

  • van Wees, B., van Houten, H., Beenakker, C. W. J., Williamson, J., Kouwenhoven, L. P., van der Marel D., and Foxon, C. T., 1988, Quantised Conductance of Point Contacts in a 2DEG, Phys. Rev. Lett., 60:848.

    Article  ADS  Google Scholar 

  • Wharam, D. A., Thornton, T. J., Newbury, R., Pepper, M., Ahmed H., Frost J., Hasko D. G., Peacock D. C., Ritchie D., and Jones G. A. C., 1988, One-Dimensional Transport and Quantisation of the Ballistic Resistance, J. Phys. C, 21:L209.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thornton, T.J., Roukes, M.L., Scherer, A., Van der Gaag, B.P. (1991). Granularity in Narrow Wires: Conductance Fluctuations, Diffuse Boundaries and Junction Scattering. In: Ferry, D.K., Barker, J.R., Jacoboni, C. (eds) Granular Nanoelectronics. NATO ASI Series, vol 251. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3689-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3689-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3691-2

  • Online ISBN: 978-1-4899-3689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics