Skip to main content

Chemometric Applications of Thermally Produced Compounds as Time-Temperature Integrators in Aseptic Processing of Particulate Foods

  • Chapter
Process-Induced Chemical Changes in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 434))

Abstract

The chemometric principle was used to derive a guideline for obtaining a simple “yes or no” answer about the sterility of food particulates heated at aseptic processing temperatures. A quadratic temperature pulse model was used to estimate bacterial destruction from the fractional yield of thermally produced chemical marker compounds (2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one, M-1, and 4-hydroxy-5-methyl-3(2H)-furanone, M-2) and the rate constants and the activation energies of the chemical and bacterial systems. The model yielded a conservative estimate of lethality at the center of meatballs heated under different time-temperature conditions. A scheme for determining the minimum marker yield for a designated Fo-value is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awuah, G.B.; Ramaswamy, H.S.; Simpson, B.K. Thermal inactivation kinetics of trypsin at aseptic processing temperatures. J. Food Proc. Eng. 1993, 16, 315–328.

    Article  Google Scholar 

  • Baiocchi, C; Marengo, E.; Saini, G.; Roggero, M.A.; Giacosa, D. Reversed phase high-performance liquid chromatography and chemometrics, a combined investigation tool for complex phytochemical problems. J. Chromatogr. 1993, 644, 259–267.

    Article  CAS  Google Scholar 

  • Berry, M.F.; Singh, R.K.; Nelson, RE. Kinetics of methytmethionine sulfonium salt destruction in a model particulate system. J. Food Sci. 1990, 55, 502–505.

    Article  CAS  Google Scholar 

  • David, J.R.D.; Merson, R.L. Kinetic parameters for inactivation of Bacillus stearothermophilus at high temperatures. J. Food Sci. 1990, 55, 488–493, 515.

    Article  Google Scholar 

  • Feeherry, F.E.; Munsey, D.T.; Rowley, D.B. Thermal inactivation and injury of Bacillus stearothermophilus spores. Appl. Environ. Microbiol. 1987, 53, 365–370.

    PubMed  CAS  Google Scholar 

  • Hicks, K.B.; Harris, D.W.; Feather, M.S.; Loeppky, R.N. Production of 4-hydroxy-5-methyl-3(2H)-furanone, a component of beef flavor, from a 1-amino-1-deoxy-D-fructuronic acid. J. Agric. Food Chem. 1974, 22(4), 724–725.

    Article  CAS  Google Scholar 

  • Kim, H.-J.; Ball, D.; Giles, J.; White, F. Analysis of thermally produced compounds in foods by thermospray liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. J. Agric. Food Chem. 1994, 42, 2812–2816.

    Article  CAS  Google Scholar 

  • Kim, H.-J.; Taub, I.A. Intrinsic chemical markers for aseptic processing of particulate foods. Food Technol. 1993, 47(1), 91–99.

    Article  CAS  Google Scholar 

  • Kim, H.-J.; Choi, Y.-M.; Yang, A.P.P.; Yang, T.C.S.; Taub, I.A.; Giles, J.; Ditusa, C; Chall, S.; Zoltai, P. Microbiological and chemical investigation of ohmic heating of particulate foods using a 5kW ohmic system. J. Food Process. Preserv. 1996a, 20, 41–58.

    Article  CAS  Google Scholar 

  • Kim, H.-J.; Taub, I.A.; Choi, Y.-M.; Prakash, A. Principles and applications of chemical markers of sterility in HTST processing of particulate foods. ACS Symposium Series 631, American Chemical Society, Washington, DC, 1996b.

    Google Scholar 

  • Kim, M.-O.; Baltes, W. On the role of 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one in the Maillard reaction. J. Agric. Food Chem. 1996, 44, 282–289.

    Article  CAS  Google Scholar 

  • Lund, D. Heat Processing. In Physical Principles of Food Preservation;Fennema, O., Ed. Marcel Dekker, New York, 1975.

    Google Scholar 

  • Maesmans, G.; Hendrickx, M.; De Cordt, S.; Van Loey, A.; Noronha, J.; Tobback, P. Evaluation of process value distribution with time temperature integrators. Food Research Intl. 1994, 27, 413–423.

    Article  CAS  Google Scholar 

  • Mulley, E.A.; Stumbo, C.R.; Hunting, W.A. Thiamine: A chemical index of sterilization efficacy of thermal processing. J. Food Sci. 1975, 40, 993–996.

    Article  CAS  Google Scholar 

  • Oka, K.; Oshima, K.; Inamoto, N.; Pishva, D. Chemometrics and spectroscopy. Anal. Sci. 1991, 7, Suppl., 757–760.

    Article  CAS  Google Scholar 

  • Ross, E.W.. Relation of bacterial destruction to chemical marker formation during processing by thermal pulses. J. Food Process Eng. 1993, 16, 247–270.

    Article  Google Scholar 

  • Sastry, S.K.; Li, S.F.; Patel, M.; Konanayakam, M.; Bafna, P.; Doores, S.; Beelman, R.B. A bioindicator for validation of thermal processes for particulate foods. J. Food Sci. 1988, 53, 1528–1536.

    Article  Google Scholar 

  • Shaw, P.E.; Tatum, J.H.; Berry, R.E. Acid-catalyzed degradation of D-fructose. Carbohyd. Res. 1967, 5, 266–273.

    Article  CAS  Google Scholar 

  • Singh, B.; Dean, G.R.; Cantor, S.M. The role of 5-(hydroxymethyl)-furfural in the discoloration of sugar solutions. J. Am. Chem. Soc. 1948, 70, 517–522.

    Article  CAS  Google Scholar 

  • Taoukis, P.T.; Fu, B.; Labuza, T.P. Time-temperature indicators. Food Technol. 1991, 45(10), 70–82.

    CAS  Google Scholar 

  • Van Loey, A.; Hendrickx, M.; De Cordt, S.; Haentjens, T.; Tobback, P. Quantitative evaluation of thermal processes using time-temperature integrators. Trends in Food Sci. Technol. 1996, 7, 16–26.

    Article  Google Scholar 

  • Weng, W.M.; Hendrickx, M.; Maesmans, G.; Tobback, P. Immobilized peroxidase: a potential bio-indicator for evaluation of thermal processes. J. Food Sci. 1991, 56, 567–570.

    Article  CAS  Google Scholar 

  • Wescott, G.G.; Fairchild, T.M.; Foegeding, P.M. Bacillus cereus and Bacillus stearothermophilus spore activation in batch and continuous flow systems. J. Food Sci. 1995, 60, 446–450.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, HJ., Choi, YM. (1998). Chemometric Applications of Thermally Produced Compounds as Time-Temperature Integrators in Aseptic Processing of Particulate Foods. In: Shahidi, F., Ho, CT., van Chuyen, N. (eds) Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology, vol 434. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1925-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1925-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1927-4

  • Online ISBN: 978-1-4899-1925-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics