Skip to main content

Effect of Maturity and Curing on Peanut Proteins

Changes in Protein Surface Hydrophobicity

  • Chapter
Process-Induced Chemical Changes in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 434))

Abstract

A hydrophobic fluorescence probe, 1,8-anilinonaphthalene sulfonate (ANS), was used to study the changes in protein surface hydrophobicity (PSH) occurring during peanut maturation and curing. PSH increased with the degree of maturity and during curing (windrow drying). The increase of PSH during curing or heating was more pronounced in immature peanuts than their mature counterparts, suggesting that more hydrophobic sites are hidden in the former proteins. PSH decreased when proteins were chemically modified with phenyl-glyoxal (an arginine-modifying agent), suggesting that arginine might play a role in hydrophobicity. The findings indicate that maturation and curing affect PSH, and that there is a relationship between PSH and peanut maturity. Possible factors contributing to the increase of PSH are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, S.; Noguchi, M.; Yamashita, M.; Kato, H.; Fujimaki, M. Applying proteolytic enzymes on soybean. Part VII. Agric. Biol. Chem. 1970, 34, 1338–1345.

    Article  CAS  Google Scholar 

  • Akita, A.M.; Nakai, S. Lipophylization of b-lactoglobulin. Effect on hydrophobicity, conformation and surface functional properties. J. Food Sci. 1980, 55, 711.

    Article  Google Scholar 

  • Albani, J.R. Effects of sialic acids and the drug adrenergic blocker, propranolol, on the dynamics of human acid glycoprotein: a fluorescence study. J. Biochem. 1994, 116, 625–630.

    PubMed  CAS  Google Scholar 

  • Bertazzon, A.; Tian, G.H.; Lamblin, A.; Tsong, T.Y. Enthalpie and entropie contributions to actin stability: Cal-orimetry, circular dichroism, and fluorescence study and effects of calcium. Biochem. 1990, 29, 291–298.

    Article  CAS  Google Scholar 

  • Beyeler, M.; Solms, J. Interaction of flavor model compounds with soy protein and bovine serum albumin. Le-bensm-Wiss. u. Technol. 1974, 7, 217–219.

    CAS  Google Scholar 

  • Bonomi, F.; Iametti, S. Real-time monitoring of the surface hydrophobicity changes associated with isothermal treatment of milk and milk protein fractions. Milchwissenschaft 1991, 46, 71–14.

    CAS  Google Scholar 

  • Brand, L.; Gohlke, J.R.; Rao, D.S. Evidence for binding of rose bengal and anilino-naphthalenesulfonates at the active site regions of liver alcohol dehydrogenase. Biochem. 1967, 6, 3510–3518.

    Article  CAS  Google Scholar 

  • Cardamone, M.; Puri, N.K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 1992, 282, 589–593.

    PubMed  CAS  Google Scholar 

  • Chung, S.Y., Vercellotti, J.R., Sanders, T.H. Rapid test for alcohol dehydrogenase during peanut maturation and curing. In Chemical Markers for the Quality of Processed and Stored Foods, ACS Symposium Series 631, American Chemical Society, Washington, D.C., pp 197–188.

    Google Scholar 

  • Chung, S.Y; Ullah, A.H.; Sanders, T.H. Peptide mapping of peanut proteins: Identification of peptides as potential indicators of peanut maturity. J. Agric. Food Chem. 1994, 42, 623–628.

    Article  CAS  Google Scholar 

  • Chung, S.Y; Vercellotti, J.R.; Sanders, T.H. An enzyme-amplified microtiter plate assay for ethanol: Application to the detection of apparent ethanol in peanuts. J. Agric. Food Chem. 1995, 43, 1545–1548.

    Article  CAS  Google Scholar 

  • Damodaran, S.; Kinsella, J.E. Interaction of carbonyls with soy protein: Conformational effects. J. Argic. Food Chem. 1981, 29, 1253–1257.

    Article  CAS  Google Scholar 

  • Dufour, E.; Roger, P.; Haertle, T. Binding of benzopyrene, ellipticine, and cis-parinaric acid to β-lactoglobulin: Influence of protein modifications. 1992.

    Google Scholar 

  • Eynard, L.; Iametti, S.; Relkin, P.; Bonomi, F. Surface hydrophobicity changes and heat-induced modifications of lactalbumin. J. Agric. Food Chem.40, 1992, 1731–1736.

    Article  CAS  Google Scholar 

  • Farahbakhsh, Z.; Baldwin, R. L.; Winsnieski, B.J. Effect of low pH on the conformation of Pseudomonas Exotoxin A. J. Biol. Chem. 1987, 262, 2256–2261.

    PubMed  CAS  Google Scholar 

  • Fujimaki, M.; Kato, H.; Arai, S.; Tamaki, E. Applying proteolytic enzymes on soybean. Part 1. Food Technol. 1968, 22, 889–893.

    CAS  Google Scholar 

  • Fujii, N.; Hamano, M.; Hashimoto, H.; Ono, F. Solubilization of lipohilic compound in highly concentrated saccharide solutions containing protein. Biosci. Biotech. Biochem. 1992, 56, 118–121.

    Article  CAS  Google Scholar 

  • Goto, Y; Fink, A. Conformational states of lactamase: Molten-globule states at acidic and alkaline pH with high salt. Biochem. 1989, 28, 945–952.

    Article  CAS  Google Scholar 

  • Iametti, S.; Negri, E.; Bonomi, F.; Giangiacomo, R. A spectrofluorimetric approach to the stimation of changes in protein surface hydrophobicity during cheese ripening. Neth. Milk Dairy J. 1991, 45, 183–191.

    CAS  Google Scholar 

  • Lakkis, J.; Villota, R. Effect of acylation on substructural properties of proteins: A study using fluorescence and circular dichroism. J. Agric. Food Chem. 1992, 40, 553–560.

    Article  CAS  Google Scholar 

  • Lange, L.G.; Riordan, J.F.; Vallee, B.L. Functional arginyl residues as NADH binding sites of alcohol dehydrogenases. Biochem. 1974, 13, 4361–4370.

    Article  CAS  Google Scholar 

  • Laszlo, A.; Lawrence, P. S. Parallel induction and synthesis of PDC and ADH in anoxic maize roots. Mol. Gen. Genet. 1983, 192, 110–117.

    Article  CAS  Google Scholar 

  • Lau, K.Y; Barvano, D.M; Rasmussen, R.R. Influence of Pasteurization of milk on protein breakdown in chesddar cheese during aging. J. Dairy Sci. 1991, 74, 727–740.

    Article  CAS  Google Scholar 

  • LeBlanc E.; LeBlanc, R. Determination of hydrophobicity and reactive groups in proteins of cod (Gadus morhua) muscle during frozen storage. Food Chem. 1992, 43, 3–11.

    Article  CAS  Google Scholar 

  • Mahmoud, M.I.; Malone, W.T.; Cordle, C.T. Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. J. Food Sci. 1992, 57, 1223–1228.

    Article  CAS  Google Scholar 

  • Matsudomi, N., Mori, H., Kato, A., and Kobayashi, K. Emulsifying and foaming properties of heat-denatured soybean 11S globulins in relation to their surface hydrophobicity. Agric. Biol. Chem. 1985, 49, 915–919.

    Article  CAS  Google Scholar 

  • Mucke, U.; Konig, S.; Hubner, G. Purification and characterization of pyruvate decarboxylase from pea seeds (Pisum sativum cv. Miko). Biol. Chem. Hoppe-Seyler 1995, 376, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee J.J.; Dekker, E.E. Inactivation of E. Coli 2-amino-3-ketobutyrate CoA ligase by phenylglyoxal and identification of an active-site arginine peptide. Arch. Biochem. Biophys. 1992, 299, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, M.; Arai, S.; Fujimaki, M. Applying proteolytic enzymes on soybean. Part 2. J. Food Sci. 1970, 35, 211–214.

    Article  CAS  Google Scholar 

  • Ohnishi, M., Sugawara, R., and Kusano, T. Structure-activity relationship between the hydrophobicity of alkali metal salts of warfarin [3-(acetonyl-benzyl)-4-hydroxycoumarin] and the effectiveness of the taste response to these salts in mice. Biosci. Biotech. Biochem. 1995, 59, 995–1001.

    Article  CAS  Google Scholar 

  • O’Keefe, S.F.; Wilson, L.A.; Resurreccion, A.R; Murphy, P. Determination of the binding of hexanal to soy glycinin and conglycinin in an aqueous model system using a headspace technique. J. Agric. Food Chem. 1991, 39, 1022–1028.

    Article  Google Scholar 

  • Otagiri, K.; Nosho, Y.; Shinoda, I.; Fukui, H.; Okai, H. Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. Agric. Biol. Chem. 1985, 49, 1019–1026.

    Article  CAS  Google Scholar 

  • Paulson, A.T.; Tung, M.A. Solubility, hydrophobicity and net charge of succinylated canola protein isolate. J. Food Sci. 1987, 52, 1557–1561.

    Article  Google Scholar 

  • Peri, C; Pagliarini, E.; Iametti, S.; Bonomi, F. A study of surface hydrophobicity of milk proteins during enzymic coagulation and curd hardening. J. Dairy Res. 1990, 57, 101–108.

    Article  CAS  Google Scholar 

  • Petruccelli, S.; Anon, M.C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 2. Surface properties. J. Agric. Food Chem. 1994, 42, 2170–2176.

    Article  CAS  Google Scholar 

  • Ploug, M.; Ellis, V.; Dano, K. Ligand interaction between urokinase-type plasminogen activator and its receptor probed with 8-anilino-l-naphthalenesulfonate. Evidence for a hydrophobic binding site exposed only on the intact receptor. Biochem. 1994, 33, 8991–8997.

    Article  CAS  Google Scholar 

  • Richieri, G.V.; Anel, A.; Kleinfeld, A.M. Interactions of long-chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe of ADIFAB. Biochem. 1993, 32, 7574–7580.

    Article  CAS  Google Scholar 

  • Russell, D.A.; Wong, D.M.L.; Sachs, M.M. The anaerobic response of soybean. Plant Physiol. 1990, 92, 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Semisotnov, G.V.; Rodionova, N.A.; Razgulyaev, O.I.; Uversky, V.N.; Gripas, A.F.; Gilmanshin, R.I. Study of the Molten globule intermediate state in protein folding by a hydrophobic fluorescence probe. Chemtracts-Bio-chem. Molecular. Biology 1991, 2, 393–397.

    Google Scholar 

  • Sorgentini, D.A.; Wagner, J.R.; Anon, M.C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. J. Agric. Food Chem. 1995, 43, 2471–2479.

    Article  CAS  Google Scholar 

  • Tajima, S.; LaRue, T.A. Enzymes for acetaldehyde and ethanol formation in legume nodules. Plant_hysiol. 1982, 70, 388–392.

    CAS  Google Scholar 

  • Tani, F.; Murata, M.; Higasa, T.; Goto, M.; Kitabatake, N.; Doi, E. Molten globule state of protein molecules in heat-induced transparent food gels. J. Agric. Food Chem. 1995, 43, 2325–2331.

    Article  CAS  Google Scholar 

  • Tsutsui, T.; Li-Chan, E.; Nakai, S. A simple fluorometric method for fat-binding capacity as an index of hydrophobicity of proteins. J. Food Sci. 1986, 57, 1268–1272.

    Article  Google Scholar 

  • Vercellotti, J.R.; Sanders, T.H.; Chung, S.Y.; Bett, K.L.; Vineyard, B.T. Carbohydrate metabolism in peanuts during postharvest curing and maturation. In Food Flavors: Generation, Analysis and Process Influence. G. Charalambous (Ed.). Elsevier Science Publishers, Amsterdam, The Netherlands, 1995; pp. 1547–1578.

    Chapter  Google Scholar 

  • Williams, E.J.; Drexler, J.S. A non-destructive method for determining peanut pod maturity. Peanut Sci. 1981, 8, 134.

    Article  Google Scholar 

  • Zheng, B.A.; Matsumura, Y.; Mori, T. Conformational changes and surface properties of legumin from broad beans in relation to its thermal aggregation. Biosci. Biotech. Biochem. 1993, 57, 1366–1368.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chung, SY., Vercellotti, J.R., Sanders, T.H. (1998). Effect of Maturity and Curing on Peanut Proteins. In: Shahidi, F., Ho, CT., van Chuyen, N. (eds) Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology, vol 434. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1925-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1925-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1927-4

  • Online ISBN: 978-1-4899-1925-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics